摘要:
A ground penetrometer for determining pH and oxidation reduction potential (ORP) of soils. The penetrometer includes an ORP electrode, a pH electrode, reference electrodes, and a temperature sensor. A singular reference electrode device establishes two reference partial electrical circuits complementing the ORP and pH electrodes. The reference electrode device includes an electrolytic chamber isolated from soil being investigated by an ion permeable ceramic barrier. Electrolytic liquids are retained within their chamber. The temperature sensor and the electrical circuits generate voltage or current signals to transducers, which in turn generate data signals responsive to the electrical signals to a microprocessor. The penetrometer, a driver for forcing the penetrometer into the ground, and the microprocessor are carried on a motorized vehicle to and about a site being investigated. The data is stored within the microprocessor and is available for graphic reproduction and transferral to other data handling equipment.
摘要:
Methods of characterizing subsurface conditions in a selected geographic region previously associated as a whole with a specific subsurface material characteristic reference profile such as from a USDA-NRCS soil survey. The method includes deploying a sensing tool at selected positions within the geographic region to determine a depth-referenced subsurface material characteristic such as soil type or strata, comparing the determined subsurface material characteristic to the subsurface material characteristic reference profile associated with the geographic region to determine a correlation between the subsurface material characteristic reference profile and the depth-referenced subsurface material characteristic, and then deciding whether to deploy the tool at another position, and at what optimum position to deploy the tool, by considering the correlation.
摘要:
Methods of characterizing subsurface conditions in a selected geographic region previously associated as a whole with a specific subsurface material characteristic reference profile such as from a USDA-NRCS soil survey. The method includes deploying a sensing tool at selected positions within the geographic region to determine a depth-referenced subsurface material characteristic such as soil type or strata, comparing the determined subsurface material characteristic to the subsurface material characteristic reference profile associated with the geographic region to determine a correlation between the subsurface material characteristic reference profile and the depth-referenced subsurface material characteristic, and then deciding whether to deploy the tool at another position, and at what optimum position to deploy the tool, by considering the correlation.
摘要:
Methods of characterizing subsurface conditions in a selected geographic region previously associated as a whole with a specific subsurface material characteristic reference profile such as from a USDA-NRCS soil survey. The method includes deploying a sensing tool at selected positions within the geographic region to determine a depth-referenced subsurface material characteristic such as soil type or strata, comparing the determined subsurface material characteristic to the subsurface material characteristic reference profile associated with the geographic region to determine a correlation between the subsurface material characteristic reference profile and the depth-referenced subsurface material characteristic, and then deciding whether to deploy the tool at another position, and at what optimum position to deploy the tool, by considering the correlation.