摘要:
A telescope design having an integrated baffle is disclosed herein. The integrated baffle is configured as both a baffle and a mirror support. The integrated baffle can be shaped to the F-cone between the primary and secondary mirrors of a given telescope design. The baffle design can be adjusted to minimize or otherwise reduce the total obscuration of the baffle to improve the optical throughput. The interior facing surfaces of the integrated baffle can be configured with corner reflectors, so that the detector views itself, instead of the baffle.
摘要:
A telescope design is disclosed that has at least some of its interior facing surfaces configured with corner reflectors, so that a detector operatively coupled to the telescope views itself, instead of those surfaces. The corner reflectors may be on, for example, interior facing surfaces of a conventional baffle appended to the telescope and/or minor supports or other structures inside the telescope housing that are within the detector's FOV. Likewise, the corner reflectors may be on interior facing surfaces of a baffle that is integrated into the telescope housing. In some such cases, the integrated baffle can be configured as both a baffle and a mirror support. The integrated baffle can be shaped to the F-cone between minors of a given telescope design, and/or configured to minimize or otherwise reduce the total obscuration of the baffle to improve the optical throughput.
摘要:
A telescope design having an integrated baffle is disclosed herein. The integrated baffle is configured as both a baffle and a mirror support. The integrated baffle can be shaped to the F-cone between the primary and secondary mirrors of a given telescope design. The baffle design can be adjusted to minimize or otherwise reduce the total obscuration of the baffle to improve the optical throughput. The interior facing surfaces of the integrated baffle can be configured with corner reflectors, so that the detector views itself, instead of the baffle.
摘要:
A sensor is used to detect and track a plurality of objects by using a separate track window for each object. Such sensors may be electro optical or infrared. Each object of interest (potential target) in the sensor FOV has a unique track window assigned. This allows independent control of video frame summing for each object to maintain a constant (optimized) signal to noise ratio (SNR) over an extremely large signal dynamic range and reduces track jitter by the simultaneous tracking of multiple objects.
摘要:
A light source is injected into an optical path of a camera to provide a controlled background to insure optimum uniformity of performance of the camera. An optical system, camera, image background measurement system, source intensity control, and light source comprise a closed loop control around the light source to control an operating point of the camera. Intensity of the light source is decreased as intensity of a background flux is increased.