Abstract:
Disclosed is a method, apparatus and system of drying wet toner particles which includes the use of cooling fluid. The method also includes introducing a heated drying gas into a toner drying chamber to create a circulating flow of drying gas.
Abstract:
In an exemplary embodiment of the invention, a continuous process for rounding conventional toner particles includes forming a conventional toner particle slurry by mixing a dispersant and/or a liquid with dry toner particles, heating the conventional toner particle slurry to a first temperature beyond its glass transition temperature to form a coalesced toner particle slurry, quenching the coalesced toner particle slurry to a second temperature below the glass transition temperature after a residence time has elapsed, and recovering the quenched particle slurry at an outlet wherein the circularity of the conventional toner particles in the quenched toner particle slurry is from approximately 0.940 to 0.999 and the time frame for the heating, quenching and recovering steps is less than 20 minutes. An apparatus for practicing the novel continuous coalescence of toner particles, includes an inlet passage, a first heat exchanger coupled to the inlet passage, a residence time coil coupled to the first heat exchanger, a cooling device coupled to the residence time coil; and an outlet passage coupled to the cooling device.
Abstract:
Processes for continuously producing a wax dispersion are disclosed. A multi-screw extruder is used for the processes. A wax and a surfactant are fed into the extruder and melted together. Water is then added to form a dispersion. The wax particles are homogenized and exit the extruder to be passed through a quenching unit. The wax dispersion can be used to make toner compositions.
Abstract:
Processes for continuously coalescing particles from an aggregated particle slurry are disclosed. The aggregated particle slurry is heated, then coalesced by raising the pH. The coalesced particles are homogenized and exit as a coalesced particle slurry. A multi-screw extruder is used for the coalescing. These processes are useful for providing coalesced particles such as toner compositions.
Abstract:
Processes for continuously coalescing particles from an aggregated particle slurry are disclosed. The aggregated particle slurry is heated, then coalesced by raising the pH. The coalesced particles are homogenized and exit as a coalesced particle slurry. A multi-screw extruder is used for the coalescing. These processes are useful for providing coalesced particles such as toner compositions.
Abstract:
Processes for continuously coalescing particles from an aggregated particle slurry are disclosed. The aggregated particle slurry is heated, then coalesced by raising the pH. The coalesced particles are homogenized and exit as a coalesced particle slurry. A multi-screw extruder is used for the coalescing. These processes are useful for providing coalesced particles such as toner compositions.
Abstract:
Disclosed is a method, apparatus and system of drying wet toner particles which includes the use of cooling fluid. The method also includes introducing a heated drying gas into a toner drying chamber to create a circulating flow of drying gas.
Abstract:
Processes for continuously coalescing particles from an aggregated particle slurry are disclosed. The aggregated particle slurry is heated, then coalesced by raising the pH. The coalesced particles are homogenized and exit as a coalesced particle slurry. A multi-screw extruder is used for the coalescing. These processes are useful for providing coalesced particles such as toner compositions.
Abstract:
In an exemplary embodiment of the invention, a continuous process for rounding conventional toner particles includes forming a conventional toner particle slurry by mixing a dispersant and/or a liquid with dry toner particles, heating the conventional toner particle slurry to a first temperature beyond its glass transition temperature to form a coalesced toner particle slurry, quenching the coalesced toner particle slurry to a second temperature below the glass transition temperature after a residence time has elapsed, and recovering the quenched particle slurry at an outlet wherein the circularity of the conventional toner particles in the quenched toner particle slurry is from approximately 0.940 to 0.999 and the time frame for the heating, quenching and recovering steps is less than 20 minutes. An apparatus for practicing the novel continuous coalescence of toner particles, includes an inlet passage, a first heat exchanger coupled to the inlet passage, a residence time coil coupled to the first heat exchanger, a cooling device coupled to the residence time coil; and an outlet passage coupled to the cooling device.
Abstract:
A continuous process for making a pigment dispersion includes continuously feeding a pigment into a feed section of a screw extruder at a controlled rate, continuously feeding a surfactant into the feed section of the screw extruder at a controlled rate, continuously feeding water downstream of the feed section to emulsify the pigment and the surfactant, forming a water-in-pigment dispersion, continuously feeding additional water downstream of the previously fed water to cause a phase inversion of the water-in-pigment dispersion, forming a pigment-in-water dispersion, continuously homogenizing the pigment-in-water dispersion in the screw extruder to create a homogenous aqueous pigment dispersion and collecting the homogenous aqueous pigment dispersion from an exit section of the screw extruder.