Abstract:
A method for calibrating in situ a plurality of printheads in an imaging device has been developed. Firing signals operate a plurality of printheads to form ink test patterns on an image receiving member. Reflectance measurements of light reflected from the test patterns and optical density measurements for a portion of the patterns formed by only one printhead in the plurality of printheads are used to adjust the firing signals and enable the printheads to print within a predetermined range about an average reflectance value and a predetermined optical density.
Abstract:
A method for process direction registration in an inkjet printer includes ejecting ink drops from a first inkjet at less than a maximum operating rate onto an image receiving surface moving in a process direction. The method includes generating image data samples of the image receiving surface including the ink drops. The method further includes identifying a center of the ink drops in the process direction with reference to the image data samples and storing a time offset value in a memory to correct an identified process direction offset between the identified center of the ink drops and another identified center of ink drops that are ejected by another inkjet.
Abstract:
A method for calibrating in situ a plurality of printheads in an imaging device has been developed. Firing signals operate a plurality of printheads to form ink test patterns on an image receiving member. Reflectance measurements of light reflected from the test patterns and optical density measurements for a portion of the patterns formed by only one printhead in the plurality of printheads are used to adjust the firing signals and enable the printheads to print within a predetermined range about an average reflectance value and a predetermined optical density.
Abstract:
A method for process direction registration in an inkjet printer includes ejecting ink drops from a first inkjet at less than a maximum operating rate onto an image receiving surface moving in a process direction. The method includes generating image data samples of the image receiving surface including the ink drops. The method further includes identifying a center of the ink drops in the process direction with reference to the image data samples and storing a time offset value in a memory to correct an identified process direction offset between the identified center of the ink drops and another identified center of ink drops that are ejected by another inkjet.