Object Recognition For Security Screening and Long Range Video Surveillance
    3.
    发明申请
    Object Recognition For Security Screening and Long Range Video Surveillance 有权
    对象识别用于安全检查和远程视频监控

    公开(公告)号:US20120243741A1

    公开(公告)日:2012-09-27

    申请号:US13397924

    申请日:2012-02-16

    IPC分类号: G06K9/62 G06K9/00

    CPC分类号: G06K9/6296 G06K2209/09

    摘要: A method of detecting an object in image data that is deemed to be a threat includes annotating sections of at least one training image to indicate whether each section is a component of the object, encoding a pattern grammar describing the object using a plurality of first order logic based predicate rules, training distinct component detectors to each identify a corresponding one of the components based on the annotated training images, processing image data with the component detectors to identify at least one of the components, and executing the rules to detect the object based on the identified components.

    摘要翻译: 一种检测被认为是威胁的图像数据中的对象的方法包括:注释至少一个训练图像的部分,以指示每个部分是否是对象的组件,使用多个第一顺序对描述对象的模式语法进行编码 基于逻辑的谓词规则,训练不同的分量检测器,以基于所标注的训练图像来识别相应的一个分量,使用分量检测器处理图像数据以识别组件中的至少一个,以及执行规则以检测基于对象 对所识别的组件。

    Object recognition for security screening and long range video surveillance
    4.
    发明授权
    Object recognition for security screening and long range video surveillance 有权
    安全检查和远程视频监控的对象识别

    公开(公告)号:US08903128B2

    公开(公告)日:2014-12-02

    申请号:US13397924

    申请日:2012-02-16

    IPC分类号: G06K9/00 G06K9/62

    CPC分类号: G06K9/6296 G06K2209/09

    摘要: A method of detecting an object in image data that is deemed to be a threat includes annotating sections of at least one training image to indicate whether each section is a component of the object, encoding a pattern grammar describing the object using a plurality of first order logic based predicate rules, training distinct component detectors to each identify a corresponding one of the components based on the annotated training images, processing image data with the component detectors to identify at least one of the components, and executing the rules to detect the object based on the identified components.

    摘要翻译: 一种检测被认为是威胁的图像数据中的对象的方法包括:注释至少一个训练图像的部分,以指示每个部分是否是对象的组件,使用多个第一顺序对描述对象的模式语法进行编码 基于逻辑的谓词规则,训练不同的分量检测器,以基于所标注的训练图像来识别相应的一个分量,使用分量检测器处理图像数据以识别组件中的至少一个,以及执行规则以检测基于对象 对所识别的组件。

    Predicate logic based image grammars for complex visual pattern recognition
    5.
    发明授权
    Predicate logic based image grammars for complex visual pattern recognition 有权
    用于复杂视觉模式识别的基于逻辑的图像语法

    公开(公告)号:US08548231B2

    公开(公告)日:2013-10-01

    申请号:US12724954

    申请日:2010-03-16

    IPC分类号: G06K9/62 G06F17/00

    CPC分类号: G06K9/00369 G06K9/626

    摘要: First order predicate logics are provided, extended with a bilattice based uncertainty handling formalism, as a means of formally encoding pattern grammars, to parse a set of image features, and detect the presence of different patterns of interest implemented on a processor. Information from different sources and uncertainties from detections, are integrated within the bilattice framework. Automated logical rule weight learning in the computer vision domain applies a rule weight optimization method which casts the instantiated inference tree as a knowledge-based neural network, to converge upon a set of rule weights that give optimal performance within the bilattice framework. Applications are in (a) detecting the presence of humans under partial occlusions and (b) detecting large complex man made structures in satellite imagery (c) detection of spatio-temporal human and vehicular activities in video and (c) parsing of Graphical User Interfaces.

    摘要翻译: 提供了第一级谓词逻辑,扩展了基于双精度的不确定性处理形式,作为正式编码模式语法的手段,解析一组图像特征,并检测在处理器上实现的不同兴趣模式的存在。 来自不同来源的信息和来自检测的不确定性,被集成在双层框架内。 计算机视觉领域中的自动逻辑规则权重学习应用规则权重优化方法,该方法将实例化推理树作为基于知识的神经网络进行聚合,以收敛于在边界框架内提供最佳性能的一组规则权重。 应用是(a)检测部分闭塞下人的存在,(b)检测卫星图像中的大型复杂人造结构(c)检测视频中的时空人类和车辆活动,(c)解析图形用户界面 。

    Predicate Logic based Image Grammars for Complex Visual Pattern Recognition
    6.
    发明申请
    Predicate Logic based Image Grammars for Complex Visual Pattern Recognition 有权
    基于逻辑逻辑的图像语法用于复杂视觉模式识别

    公开(公告)号:US20100278420A1

    公开(公告)日:2010-11-04

    申请号:US12724954

    申请日:2010-03-16

    IPC分类号: G06K9/62 G06K9/46

    CPC分类号: G06K9/00369 G06K9/626

    摘要: First order predicate logics are provided, extended with a bilattice based uncertainty handling formalism, as a means of formally encoding pattern grmmars, to parse a set of image features, and detect the presence of different patterns of interest implemented on a processor. Information from different sources and uncertainties from detections, are integrated within the bilattice framework. Automated logical rule weight learning in the computer vision domain applies a rule weight optimization method which casts the instantiated inference tree as a knowledge-based neural network, to converge upon a set of rule weights that give optimal performance within the bilattice framework. Applications are in (a) detecting the presence of humans under partial occlusions and (b) detecting large complex man made structures in satellite imagery (c) detection of spatio-temporal human and vehicular activities in video and (c) parsing of Graphical User Interfaces.

    摘要翻译: 提供了第一级谓词逻辑,扩展了基于二进制的不确定性处理形式,作为正式编码模式格式的手段,解析一组图像特征,以及检测在处理器上实现的不同感兴趣模式的存在。 来自不同来源的信息和来自检测的不确定性,被集成在双层框架内。 计算机视觉领域中的自动逻辑规则权重学习应用规则权重优化方法,该方法将实例化推理树作为基于知识的神经网络进行聚合,以收敛于在边界框架内提供最佳性能的一组规则权重。 应用是(a)检测部分闭塞下人的存在,(b)检测卫星图像中的大型复杂人造结构(c)检测视频中时空人类和车辆的活动,(c)解析图形用户界面 。

    METHOD TO IDENTIFY OPTIMUM CORONARY ARTERY DISEASE TREATMENT
    7.
    发明申请
    METHOD TO IDENTIFY OPTIMUM CORONARY ARTERY DISEASE TREATMENT 审中-公开
    识别最佳冠状动脉疾病治疗的方法

    公开(公告)号:US20160292372A1

    公开(公告)日:2016-10-06

    申请号:US14442517

    申请日:2013-11-15

    IPC分类号: G06F19/00 G06N3/04 G06N3/08

    CPC分类号: G16H50/20 G06N3/0472 G06N3/08

    摘要: A method of identifying an optimum treatment for a patient suffering from coronary artery disease, comprising: (i) providing patient information selected from: (a) status in the patient of one or more coronary disease associated biomarkers; (b) one or more items of medical history information selected from prior condition history, intervention history and medication history; (c) one or more items of diagnostic history, if the patient has a diagnostic history; and (d) one or more items of demographic data; (ii) aggregating the patient information in: (a) a Bayesian network; (b) a machine learning and neural network; (c) a rule-based system; and (d) a regression-based system; (iii) deriving a predicted probabilistic adverse event outcome for each intervention comprising percutaneous coronary intervention by placement of a bare metal stent, or a drug-coated stent; or by coronary artery bypass grafting; and (iv) determining the intervention having the lowest predicted probabilistic adverse outcome.

    摘要翻译: 一种鉴定患有冠状动脉疾病的患者的最佳治疗的方法,包括:(i)提供患者信息,所述患者信息选自:(a)患者中一种或多种冠状动脉疾病相关生物标志物的状态; (b)从先前情况史,干预史和用药史选择的一项或多项病史信息; (c)患者具有诊断史的一项或多项诊断史; 和(d)一个或多个人口统计数据项目; (ii)在以下方面聚合患者信息:(a)贝叶斯网络; (b)机器学习和神经网络; (c)基于规则的制度; 和(d)基于回归的系统; (iii)通过放置裸金属支架或药物涂层的支架,导出包括经皮冠状动脉介入的每个干预的预测概率不良事件结果; 或通过冠状动脉旁路移植术; 和(iv)确定具有最低预测概率不良结果的干预。

    Method and system for cooperative diversity visual cognition in wireless video sensor networks
    8.
    发明授权
    Method and system for cooperative diversity visual cognition in wireless video sensor networks 有权
    无线视频传感器网络中协同多样性视觉认知的方法与系统

    公开(公告)号:US09398268B2

    公开(公告)日:2016-07-19

    申请号:US13480064

    申请日:2012-05-24

    IPC分类号: H04N7/15 H04N7/18

    CPC分类号: H04N7/181

    摘要: A method and system for cooperative diversity visual cognition in a wireless sensor network is disclosed. The method and system are capable of solving distributed visual cognition tasks (for example, online simultaneous reconstruction of 3D models of a large area) by using multiple video streams and exploiting cooperative diversity video sensing information while ensuring an optimal tradeoff between energy consumption and video quality of images received from said multiple video streams.

    摘要翻译: 本发明公开了一种无线传感器网络中的协同分集视觉认知的方法和系统。 该方法和系统能够通过使用多个视频流解决分布式视觉认知任务(例如,大面积的3D模型的在线同时重建),并利用协同分集视频传感信息,同时确保能量消耗与视频质量之间的最佳权衡 从所述多个视频流接收的图像。

    Systems and Methods for Automatic Speech Recognition Using Domain Adaptation Techniques

    公开(公告)号:US20190325861A1

    公开(公告)日:2019-10-24

    申请号:US16387644

    申请日:2019-04-18

    摘要: Systems and methods for automatic speech recognition by training a neural network to learn features from raw speech. The system comprises a neural network executing on a computer system and comprising a feature extractor, a label classifier, and a domain classifier. The feature extractor processes raw speech data and generates a first output data. The label classifier processes the first output data and generates a second output data. The domain classifier processes the first output data and generating a third output data. The neural network calculates first loss data based on the second output, and second loss data based on the third output. Further, the neural network is trained to minimize a cross-entropy cost of the label classifier and to maximize a cross-entropy cost of the domain classifier using the first loss data and the second loss data.

    Method and System for Cooperative Diversity Visual Cognition in Wireless Video Sensor Networks
    10.
    发明申请
    Method and System for Cooperative Diversity Visual Cognition in Wireless Video Sensor Networks 有权
    无线视频传感器网络中协作多样性视觉认知的方法与系统

    公开(公告)号:US20120300068A1

    公开(公告)日:2012-11-29

    申请号:US13480064

    申请日:2012-05-24

    IPC分类号: H04N7/18

    CPC分类号: H04N7/181

    摘要: A method and system for cooperative diversity visual cognition in a wireless sensor network is disclosed. The method and system are capable of solving distributed visual cognition tasks (for example, online simultaneous reconstruction of 3D models of a large area) by using multiple video streams and exploiting cooperative diversity video sensing information while ensuring an optimal tradeoff between energy consumption and video quality of images received from said multiple video streams.

    摘要翻译: 公开了一种在无线传感器网络中进行协同多样化视觉认知的方法和系统。 该方法和系统能够通过使用多个视频流解决分布式视觉认知任务(例如,大面积的3D模型的在线同时重建),并利用协同分集视频传感信息,同时确保能量消耗与视频质量之间的最佳权衡 从所述多个视频流接收的图像。