Automatic reading tutoring with parallel polarized language modeling
    1.
    发明申请
    Automatic reading tutoring with parallel polarized language modeling 有权
    使用平行极化语言建模的自动阅读辅导

    公开(公告)号:US20080177545A1

    公开(公告)日:2008-07-24

    申请号:US11655702

    申请日:2007-01-19

    IPC分类号: G10L15/28

    摘要: A novel system for automatic reading tutoring provides effective error detection and reduced false alarms combined with low processing time burdens and response times short enough to maintain a natural, engaging flow of interaction. According to one illustrative embodiment, an automatic reading tutoring method includes displaying a text output and receiving an acoustic input. The acoustic input is modeled with a domain-specific target language model specific to the text output, and with a general-domain garbage language model, both of which may be efficiently constructed as context-free grammars. The domain-specific target language model may be built dynamically or “on-the-fly” based on the currently displayed text (e.g. the story to be read by the user), while the general-domain garbage language model is shared among all different text outputs. User-perceptible tutoring feedback is provided based on the target language model and the garbage language model.

    摘要翻译: 用于自动阅读辅导的新颖系统提供了有效的错误检测和减少的假警报以及较短的处理时间负担和响应时间足够短以保持自然的,互动的互动流。 根据一个说明性实施例,自动阅读辅导方法包括显示文本输出并接收声输入。 声输入是用专门针对文本输出的领域特定的目标语言模型建立的,并且具有通用域垃圾语言模型,这两种语言模型都可以被有效地构建为无上下文的语法。 可以基于当前显示的文本(例如,用户要阅读的故事)动态地或“即时”地构建特定领域的目标语言模型,而一般域垃圾语言模型在所有不同的方式之间共享 文本输出。 基于目标语言模型和垃圾语言模型提供了用户可感知的辅导反馈。

    Automatic reading tutoring with parallel polarized language modeling
    2.
    发明授权
    Automatic reading tutoring with parallel polarized language modeling 有权
    使用平行极化语言建模的自动阅读辅导

    公开(公告)号:US08433576B2

    公开(公告)日:2013-04-30

    申请号:US11655702

    申请日:2007-01-19

    IPC分类号: G10L15/22

    摘要: A novel system for automatic reading tutoring provides effective error detection and reduced false alarms combined with low processing time burdens and response times short enough to maintain a natural, engaging flow of interaction. According to one illustrative embodiment, an automatic reading tutoring method includes displaying a text output and receiving an acoustic input. The acoustic input is modeled with a domain-specific target language model specific to the text output, and with a general-domain garbage language model, both of which may be efficiently constructed as context-free grammars. The domain-specific target language model may be built dynamically or “on-the-fly” based on the currently displayed text (e.g. the story to be read by the user), while the general-domain garbage language model is shared among all different text outputs. User-perceptible tutoring feedback is provided based on the target language model and the garbage language model.

    摘要翻译: 用于自动阅读辅导的新颖系统提供了有效的错误检测和减少的假警报以及较短的处理时间负担和响应时间足够短以保持自然的,互动的互动流。 根据一个说明性实施例,自动阅读辅导方法包括显示文本输出并接收声输入。 声输入是用专门针对文本输出的领域特定的目标语言模型建立的,并且具有通用域垃圾语言模型,这两种语言模型都可以被有效地构建为无上下文的语法。 可以基于当前显示的文本(例如,用户要阅读的故事)动态地或“即时”地构建特定领域的目标语言模型,而一般域垃圾语言模型在所有不同的方式之间共享 文本输出。 基于目标语言模型和垃圾语言模型提供了用户可感知的辅导反馈。

    Time synchronous decoding for long-span hidden trajectory model
    3.
    发明授权
    Time synchronous decoding for long-span hidden trajectory model 有权
    长跨隐藏轨迹模型的时间同步解码

    公开(公告)号:US07877256B2

    公开(公告)日:2011-01-25

    申请号:US11356905

    申请日:2006-02-17

    IPC分类号: G10L15/14

    CPC分类号: G10L15/08

    摘要: A time-synchronous lattice-constrained search algorithm is developed and used to process a linguistic model of speech that has a long-contextual-span capability. In the algorithm, hypotheses are represented as traces that include an indication of a current frame, previous frames and future frames. Each frame can include an associated linguistic unit such as a phone or units that are derived from a phone. Additionally, pruning strategies can be applied to speed up the search. Further, word-ending recombination methods are developed to speed up the computation. These methods can effectively deal with an exponentially increased search space.

    摘要翻译: 开发了一种时间同步的格格约束搜索算法,用于处理具有长语境跨度能力的语言语言模型。 在算法中,假设被表示为包括当前帧,先前帧和未来帧的指示的迹线。 每个帧可以包括相关联的语言单元,例如从电话派生的电话或单元。 此外,可以应用修剪策略来加快搜索速度。 此外,开发了文字重组方法以加速计算。 这些方法可以有效地处理指数级增加的搜索空间。

    Parameter learning in a hidden trajectory model
    4.
    发明授权
    Parameter learning in a hidden trajectory model 有权
    隐藏轨迹模型中的参数学习

    公开(公告)号:US08942978B2

    公开(公告)日:2015-01-27

    申请号:US13182971

    申请日:2011-07-14

    IPC分类号: G10L15/00 G10L15/06

    CPC分类号: G10L15/063 G10L2015/025

    摘要: Parameters for distributions of a hidden trajectory model including means and variances are estimated using an acoustic likelihood function for observation vectors as an objection function for optimization. The estimation includes only acoustic data and not any intermediate estimate on hidden dynamic variables. Gradient ascent methods can be developed for optimizing the acoustic likelihood function.

    摘要翻译: 使用用于观察向量的声学似然函数作为优化的反对函数来估计包括装置和方差的隐藏轨迹模型的分布参数。 该估计仅包括声学数据,而不包括对隐藏的动态变量的任何中间估计。 可以开发梯度上升方法来优化声似然函数。

    PARAMETER LEARNING IN A HIDDEN TRAJECTORY MODEL
    5.
    发明申请
    PARAMETER LEARNING IN A HIDDEN TRAJECTORY MODEL 有权
    参数学习在隐藏的TRAJECTORY模型

    公开(公告)号:US20110270610A1

    公开(公告)日:2011-11-03

    申请号:US13182971

    申请日:2011-07-14

    IPC分类号: G10L15/00

    CPC分类号: G10L15/063 G10L2015/025

    摘要: Parameters for distributions of a hidden trajectory model including means and variances are estimated using an acoustic likelihood function for observation vectors as an objection function for optimization. The estimation includes only acoustic data and not any intermediate estimate on hidden dynamic variables. Gradient ascent methods can be developed for optimizing the acoustic likelihood function.

    摘要翻译: 使用用于观察向量的声学似然函数作为优化的反对函数来估计包括装置和方差的隐藏轨迹模型的分布参数。 该估计仅包括声学数据,而不包括对隐藏的动态变量的任何中间估计。 可以开发梯度上升方法来优化声似然函数。

    Parameter learning in a hidden trajectory model
    6.
    发明授权
    Parameter learning in a hidden trajectory model 有权
    隐藏轨迹模型中的参数学习

    公开(公告)号:US08010356B2

    公开(公告)日:2011-08-30

    申请号:US11356898

    申请日:2006-02-17

    IPC分类号: G10L15/00

    CPC分类号: G10L15/063 G10L2015/025

    摘要: Parameters for distributions of a hidden trajectory model including means and variances are estimated using an acoustic likelihood function for observation vectors as an objection function for optimization. The estimation includes only acoustic data and not any intermediate estimate on hidden dynamic variables. Gradient ascent methods can be developed for optimizing the acoustic likelihood function.

    摘要翻译: 使用用于观察向量的声学似然函数作为优化的反对函数来估计包括装置和方差的隐藏轨迹模型的分布参数。 该估计仅包括声学数据,而不包括对隐藏的动态变量的任何中间估计。 可以开发梯度上升方法来优化声似然函数。

    Time synchronous decoding for long-span hidden trajectory model
    7.
    发明申请
    Time synchronous decoding for long-span hidden trajectory model 有权
    长跨隐藏轨迹模型的时间同步解码

    公开(公告)号:US20070198266A1

    公开(公告)日:2007-08-23

    申请号:US11356905

    申请日:2006-02-17

    IPC分类号: G10L15/28

    CPC分类号: G10L15/08

    摘要: A time-synchronous lattice-constrained search algorithm is developed and used to process a linguistic model of speech that has a long-contextual-span capability. In the algorithm, hypotheses are represented as traces that include an indication of a current frame, previous frames and future frames. Each frame can include an associated linguistic unit such as a phone or units that are derived from a phone. Additionally, pruning strategies can be applied to speed up the search. Further, word-ending recombination methods are developed to speed up the computation. These methods can effectively deal with an exponentially increased search space.

    摘要翻译: 开发了一种时间同步的格格约束搜索算法,用于处理具有长语境跨度能力的语言语言模型。 在算法中,假设被表示为包括当前帧,先前帧和未来帧的指示的迹线。 每个帧可以包括相关联的语言单元,例如从电话派生的电话或单元。 此外,可以应用修剪策略来加快搜索速度。 此外,开发了文字重组方法以加速计算。 这些方法可以有效地处理指数级增加的搜索空间。

    Parameter learning in a hidden trajectory model
    8.
    发明申请
    Parameter learning in a hidden trajectory model 有权
    隐藏轨迹模型中的参数学习

    公开(公告)号:US20070198260A1

    公开(公告)日:2007-08-23

    申请号:US11356898

    申请日:2006-02-17

    IPC分类号: G10L15/00

    CPC分类号: G10L15/063 G10L2015/025

    摘要: Parameters for distributions of a hidden trajectory model including means and variances are estimated using an acoustic likelihood function for observation vectors as an objection function for optimization. The estimation includes only acoustic data and not any intermediate estimate on hidden dynamic variables. Gradient ascent methods can be developed for optimizing the acoustic likelihood function.

    摘要翻译: 使用用于观察向量的声学似然函数作为优化的反对函数来估计包括装置和方差的隐藏轨迹模型的分布参数。 该估计仅包括声学数据,而不包括对隐藏的动态变量的任何中间估计。 可以开发梯度上升方法来优化声似然函数。

    Adapting a language model to accommodate inputs not found in a directory assistance listing
    10.
    发明授权
    Adapting a language model to accommodate inputs not found in a directory assistance listing 有权
    适应语言模型以适应在目录帮助列表中找不到的输入

    公开(公告)号:US08285542B2

    公开(公告)日:2012-10-09

    申请号:US13027921

    申请日:2011-02-15

    IPC分类号: G06F17/21

    CPC分类号: G10L15/063 G10L15/197

    摘要: A statistical language model is trained for use in a directory assistance system using the data in a directory assistance listing corpus. Calculations are made to determine how important words in the corpus are in distinguishing a listing from other listings, and how likely words are to be omitted or added by a user. The language model is trained using these calculations.

    摘要翻译: 训练统计语言模型,以使用目录援助列表语料库中的数据在目录辅助系统中使用。 进行计算,以确定语料库中的单词在区分列表和其他列表中的重要程度以及用户可能忽略或添加单词的可能性。 使用这些计算训练语言模型。