Abstract:
Methods and systems for robust watermark insertion and extraction for digital set-top boxes are disclosed and may include descrambling, detecting watermarking messages in a received video signal utilizing a watermark message parser, and immediately watermarking the descrambled video signal utilizing an embedded CPU. The embedded CPU may utilize code that may be signed by an authorized key, encrypted externally to the chip, decrypted, and stored in memory in a region off-limits to other processors. The video signal may be watermarked in a decompressed domain. The enabling of the watermarking may be verified utilizing a watchdog timer. The descriptors corresponding to the watermarking may be stored in memory that may be inaccessible by the main CPU. The watermark may comprise unique identifier data specific to the chip and a time stamp, and may be encrypted utilizing an on-chip combinatorial function.
Abstract:
Aspects of a method and system for command interface protection to achieve a secure interface are provided. A host device may encrypt a command based on a key index generated within the host device, a host device key, a command count, a random number from a slave device, at least one host control word, and a host variable value. The encrypted command may be communicated to the slave device where it may be decrypted based on the key index, the host device key decrypted from a slave device key generated by the slave device, the command count, the random number, at least one slave control word, and a slave variable value. The key index may be utilized in the host and slave devices to select a master key from a key table from which generational derivatives may be generated for command encryption and decryption respectively.
Abstract:
Methods and systems for secure watermark embedding and extraction data flow architecture are disclosed and may include embedding a watermark in a video signal utilizing an embedded CPU. The embedded CPU may be controlled utilizing a security processor via a secure bus. The watermark may be embedded in a compressed video signal that may be diverted around a compression/decompression engine. The watermark may be embedded in a decompressed video signal and may be directed through a compression/decompression engine. Requests may be sent to the embedded CPU from the main CPU via the security processor and the secure bus. The watermark may be encrypted utilizing the security processor. The secure bus may be inaccessible to the main CPU or any device not on the chip. The chip may be disabled when the embedded CPU may be disabled. Sections of the video signal may be classified and selected for embedding.
Abstract:
Methods and systems for software security in a secure communication system are disclosed and may include verifying downloaded code in a reprogrammable system and reloading prestored unmodifiable first stage code upon failure. The prestored unmodifiable first stage code, which may comprise boot code for the reprogrammable system, may be stored in locked flash, and the downloaded software code may be stored in unlocked flash. The downloaded software code may be verified by comparing a signature of the downloaded code to a private key. A first sticky bit may be utilized to indicate a failure of the verification and a second sticky bit may be utilized to indicate passing of the verification and the use of the downloaded software code. Whether to reset the reprogrammable system and reload the prestored unmodifiable first stage code may be determined from within the reprogrammable system, which may comprise a set-top box.
Abstract:
Securely loading code in a security processor may include autonomous fetching an encrypted security data set, which may comprise security code and/or root keys, by a security processor integrated within a chip. The encrypted security data set may be decrypted via the on-chip security processor and the decrypted code set may be validated on-chip using an on-chip locked value. The on-chip locked value may be stored in a one-time programmable read-only memory (OTP ROM) and may include security information generated by applying one or more security algorithms, for example SHA-based algorithms, to the security data set. The encryption of the security data set may utilize various security algorithms, for example AES-based algorithms. The on-chip locked value may be created and locked after a virgin boot of a device that includes the security processor. The security data set may be authenticated during the virgin boot of the device.
Abstract:
Aspects of a method and system for command authentication to achieve a secure interface are provided. Command authentication between a host and a slave device in a multimedia system may be achieved by on-the-fly pairing or by an automatic one-time-programming via a security processor. In an on-the-fly pairing scheme, the host may generate a host key based on a host root key and host control words while the slave may generate slave key based the host key, a slave root key and slave control words. The slave key may be stored and later retrieved by the slave device to obtain the host key for authenticating host commands. The host may be disabled from generating and/or passing the host key to the slave. In an automatic one-time programming scheme, the security processor may burn a random number onto a onetime-programmable memory in the host and slave devices for command authentication.
Abstract:
Methods and systems for protection of customer secrets in a secure reprogrammable system are disclosed, and may include controlling, via hardware logic and firmware, access to customer specific functions. The firmware may comprise trusted code, and may comprise boot code, stored in non-volatile memory, which may comprise read only memory, or a locked flash memory. A customer mode may be checked via the trusted code prior to allowing downloading of code written by a customer to the reprogrammable system. Access to customer specific functions may be restricted via commands from a trusted source. The hardware logic may be latched at startup in a disabled mode by the firmware, determined by the customer mode stored in a one time programmable memory. The customer mode may be re-checked utilizing the firmware, and may disallow the use of code other than trusted code in the reprogrammable system when the re-checking fails.
Abstract:
Methods and systems for software security in a secure communication system are disclosed and may include verifying downloaded code in a reprogrammable system and reloading prestored unmodifiable first stage code upon failure. The prestored unmodifiable first stage code, which may comprise boot code for the reprogrammable system, may be stored in locked flash, and the downloaded software code may be stored in unlocked flash. The downloaded software code may be verified by comparing a signature of the downloaded code to a private key. A first sticky bit may be utilized to indicate a failure of the verification and a second sticky bit may be utilized to indicate passing of the verification and the use of the downloaded software code. Whether to reset the reprogrammable system and reload the prestored unmodifiable first stage code may be determined from within the reprogrammable system, which may comprise a set-top box.
Abstract:
A boot code may be segmented to allow separate and independent storage of the code segments in a manner that may enable secure system boot by autonomous fetching and assembling of the boot code by a security sub-system. The code fetching may need to be done without the main CPU running on the chip for security reasons. Because the boot code may be stored in memory devices that require special software application to account for non-contiguous storage of data and/or code, for example a NAND flash memory which would require such an application as Bad Block Management, code segments stored in areas guaranteed to be usable may enable loading remaining segment separately and independently. Each of the code segments may be validated, wherein validation of the code segments may comprise use of hardware-based signatures.
Abstract:
Methods and systems for robust watermark insertion and extraction for digital set-top boxes are disclosed and may include descrambling, detecting watermarking messages in a received video signal utilizing a watermark message parser, and immediately watermarking the descrambled video signal utilizing an embedded CPU. The embedded CPU may utilize code that may be signed by an authorized key, encrypted externally to the chip, decrypted, and stored in memory in a region off-limits to other processors. The video signal may be watermarked in a decompressed domain. The enabling of the watermarking may be verified utilizing a watchdog timer. The descriptors corresponding to the watermarking may be stored in memory that may be inaccessible by the main CPU. The watermark may comprise unique identifier data specific to the chip and a time stamp, and may be encrypted utilizing an on-chip combinatorial function.