摘要:
Thermal chirp compensation in a chirp managed laser. In one example embodiment, a laser package including a laser and an optical spectrum reshaper configured to convert frequency modulated optical signals from the laser into an amplitude modulated optical signals is provided. A thermal chirp compensation device is in communication with the laser package and a laser driver. The thermal chirp compensation device includes means for generating bias condition and temperature specific thermal chirp compensation signals that each corresponds to a predetermined level of thermal chirp that is induced in the laser by operating the laser at a particular bias condition and temperature.
摘要:
Thermal chirp compensation in a chirp managed laser. In one example embodiment, a method for thermal chirp compensation in a chirp managed laser (CML) includes several acts. First, a first bias condition and temperature is selected. Next, a first thermal chirp compensation signal is generated. Then, the laser is driven by biasing a first input drive signal with the first thermal chirp compensation signal. Next, a second bias condition and temperature is selected. Then, a second thermal chirp compensation signal is generated. Finally, the laser is driven by biasing a second input drive signal with the second thermal chirp compensation signal.
摘要:
Thermal chirp compensation in a chirp managed laser. In one example embodiment, a laser package including a laser and an optical spectrum reshaper configured to convert frequency modulated optical signals from the laser into an amplitude modulated optical signals is provided. A thermal chirp compensation device is in communication with the laser package and a laser driver. The thermal chirp compensation device includes means for generating bias condition and temperature specific thermal chirp compensation signals that each corresponds to a predetermined level of thermal chirp that is induced in the laser by operating the laser at a particular bias condition and temperature.
摘要:
Thermal chirp compensation in a chirp managed laser. In one example embodiment, a method for thermal chirp compensation in a chirp managed laser (CML) includes several acts. First, a first bias condition and temperature is selected. Next, a first thermal chirp compensation signal is generated. Then, the laser is driven by biasing a first input drive signal with the first thermal chirp compensation signal. Next, a second bias condition and temperature is selected. Then, a second thermal chirp compensation signal is generated. Finally, the laser is driven by biasing a second input drive signal with the second thermal chirp compensation signal.
摘要:
The frequency chirp modulation response of a directly modulated laser is described using a small signal model that depends on slow chirp amplitude s and slow chirp time constant τs. The small signal model can be used to derive an inverse response for designing slow chirp compensation means. Slow chirp compensation means include electrical compensation, optical compensation, or both. Slow chirp electrical compensation can be implemented with an LR filter or other RF circuit coupled to a direct modulation source (e.g., a laser driver) and the directly modulated laser. Slow chirp optical compensation can be implemented with an optical spectrum reshaper having a rounded top and relatively large slope (e.g., 1.5-3 dB/GHz). The inverse response can be designed to under-compensate, to produce a flat response, or to over-compensate.
摘要:
The frequency chirp modulation response of a directly modulated laser is described using a small signal model that depends on slow chirp amplitude s and slow chirp time constant τs. The small signal model can be used to derive an inverse response for designing slow chirp compensation means. Slow chirp compensation means include electrical compensation, optical compensation, or both. Slow chirp electrical compensation can be implemented with an LR filter or other RF circuit coupled to a direct modulation source (e.g., a laser driver) and the directly modulated laser. Slow chirp optical compensation can be implemented with an optical spectrum reshaper having a rounded top and relatively large slope (e.g., 1.5-3 dB/GHz). The inverse response can be designed to under-compensate, to produce a flat response, or to over-compensate.
摘要:
A method for transmitting a signal and a fiber optic system comprising: a frequency modulated source; an optical transmission fiber positioned to receive the output of the frequency modulated source; an optical filter positioned to receive the output of the optical transmission fiber; and an optical receiver positioned to receive the output of the optical filter; characterized in that: an optical spectrum reshaper is positioned between the frequency modulated source and the optical transmission fiber; and wherein the optical filter is a narrow band pass filter relative to the bit rate of the transmitted signal; and further wherein the frequency excursion of the frequency modulated source is between 20% and 120% of the bit rate frequency.
摘要:
An optical transmitter is disclosed wherein a signal processor receives a data stream and outputs a drive signal for a laser, where the drive signal encodes each bit of the data stream according to the values of adjacent bits effective to compensate for spreading of bits within the fiber. The output of the laser is input to an optical spectrum reshaper that outputs a signal having an enhanced extinction ratio.
摘要:
An optical transmitter comprising: an optical source modulated with an input digital data signal so as to generate a first, frequency-modulated digital signal; and an amplitude modulator, modulated with the logical inverse of the input digital data signal, for receiving the first, frequency-modulated signal and generating a second, amplitude-modulated and frequency-modulated digital signal; wherein the optical source and the amplitude modulator are each configured so as to produce positive transient chirp. A method for transmitting a signal, the method comprising: generating a first, frequency-modulated digital signal by modulating an optical source with an input digital data signal; and providing a second, amplitude-modulated and frequency-modulated digital signal by passing the first, frequency-modulated digital signal through an amplitude modulator while modulating the amplitude modulator with the logical inverse of the input digital data signal; wherein the optical source and the amplitude modulator are each configured so as to produce positive transient chirp.
摘要:
A fiber optic transmitter comprising a digital driver adapted to adjust the crossing point of a digital base signal, an optical source adapted to receive the digital base signal and produce a frequency modulated optical signal, and an optical spectrum reshaper adapted to convert the frequency modulated optical signal to an amplitude modulated optical signal. A method for transmitting a signal, comprising: adjusting the crossing point of a digital base signal; providing the adjusted signal to an optical source to produce a frequency modulated optical signal; and providing the frequency modulated optical signal to an optical spectrum reshaper to convert the frequency modulated optical signal to an amplitude modulated optical signal.