摘要:
An electrodeposited copper foil with low surface roughness having a surface roughness Rz not higher than 2.5 μm and an elongation percentage not smaller than 6% at 180° C. in which tensile strength at 25° C. measured within 20 min of the point in time of ending electrodeposition is not higher than 500 MPa and the lowering rate of tensile strength at 25° C. measured within 300 min of the point in time of ending electrodeposition is not higher than 10%. The electrodeposited copper foil with low surface roughness is produced by a process employing aqueous solution of sulfuric acid-copper sulfate as electrolyte and conducting a DC current between an insoluble anode of titanium coated with a platinum metal element or its oxide element and a titanium cathode drum facing the anode, wherein the electrolyte contains hydroxyethylcellulose, polyethyleneimine, a sulfonate of active organic sulfur compound, acetylene glycol and chlorine ions.
摘要:
An electrodeposited copper foil with low surface roughness having a surface roughness Rz not higher than 2.5 μm and an elongation percentage not smaller than 6% at 180° C. in which tensile strength at 25° C. measured within 20 min of the point in time of ending electrodeposition is not higher than 500 MPa and the lowering rate of tensile strength at 25° C. measured within 300 min of the point in time of ending electrodeposition is not higher than 10%. The electrodeposited copper foil with low surface roughness is produced by a process employing aqueous solution of sulfuric acid-copper sulfate as electrolyte and conducting a DC current between an insoluble anode of titanium coated with a platinum metal element or its oxide element and a titanium cathode drum facing the anode, wherein the electrolyte contains hydroxyethylcellulose, polyethyleneimine, a sulfonate of active organic sulfur compound, acetylene glycol and chlorine ions.
摘要:
An electrolytic copper foil with low roughness surface whose surface roughness (Rz) is 2.0 μm or less, the surface uniformly provided with low roughness without uneven surge, which electrolytic copper foil exhibits a percent elongation of 10.0% or higher at 180° C. This electrolytic copper foil with low roughness surface can be obtained by a process for producing an electrolytic copper foil, comprising passing a direct current between an insoluble anode consisting of a titanium plate coated with a Platinum Group element or oxide thereof and a titanium drum as a cathode counter to the anode in an electrolyte of an aqueous solution of sulfuric acid/copper sulfate, wherein the electrolyte contains an oxyethylene surfactant a polyethyleneimine or derivative thereof, a sulfonate of active organosulfer compound and chloride ions.
摘要:
There is provided an apparatus that calculates a polarization voltage of a secondary battery. A temperature sensor detects a temperature of the secondary batter; a voltage sensor detects a voltage of the secondary battery; and a current sensor detect an electric current of the secondary battery. A battery ECU calculates a polarization voltage based on the electric current and adaptively sets an upper limit value and a lower limit value of the polarization voltage according to a temperature characteristic of the secondary battery. The calculated polarization voltage is compared with an upper limit value and a lower limit value, whereby the polarization voltage is corrected. An SOC is estimated based on the corrected polarization voltage.
摘要:
There is provided an apparatus that calculates a polarization voltage of a secondary battery. A temperature sensor detects a temperature of the secondary battery; a voltage sensor detects a voltage of the secondary battery; and a current sensor detects an electric current of the secondary battery. A battery ECU calculates a polarization voltage based on the electric current and adaptively sets an upper limit value and a lower limit value of the polarization voltage according to a temperature characteristic of the secondary battery. The calculated polarization voltage is compared with an upper limit value and a lower limit value, whereby the polarization voltage is corrected. An SOC is estimated based on the corrected polarization voltage.