Abstract:
A method for recovery of platinum group metals from a spent catalyst is described. The method includes crushing the spent catalyst to obtain a catalyst particulate material including particles having a predetermined grain size. The method includes subjecting the catalyst particulate material to a chlorinating treatment in the reaction zone at a predetermined temperature for a predetermined time period by putting the catalyst particulate material in contact with the chlorine containing gas. The method also includes applying an electromagnetic field to the chlorine-containing gas in the reaction zone to provide ionization of chlorine; thereby to cause a chemical reaction between platinum group metals and chlorine ions and provide a volatile platinum group metal-containing chloride product in the reaction zone. Following this, the volatile platinum group metal-containing chloride product is cooled to convert the product into solid phase platinum group metal-containing materials.
Abstract:
A method for recovery of gold from gold-containing materials, such as electronic waste material, minerals and sands is described. The method includes crushing the gold containing material to obtain a particulate material. The particulate material is then preheated in an oxygen-containing gas environment in a preheating zone. The method also includes mixing the oxidized particulate material with a chlorine-containing material and treating the mixture in a reaction zone. The treatment is carried out by heating the mixture to provide thermal decomposition of the chlorine-containing material and produce a chlorine-containing gas mixture, and by applying an electromagnetic field to the chlorine-containing gas mixture to provide ionization of chlorine. A volatile gold-containing chloride product, produced in the reaction zone as a result of a chemical reaction between gold and chlorine ions, is then cooled to convert the volatile gold-containing chloride product into solid phase gold-containing materials.
Abstract:
The present invention relates to an electrolytic process, methods and apparatus for the preparation of carbon monoxide and in particular to electrolysis of molten carbonates to yield carbon monoxide which may be used for chemical storage of electrical energy and further as chemical feedstock for other organic products.
Abstract:
Methods for recovery of at least one rare earth metal from ferromagnetic alloy are described, and further methods of atomic hydrogen decrepitation of a ferromagnetic alloy.
Abstract:
A method for recovery of platinum group metals from a spent catalyst is described. The method includes crushing the spent catalyst to obtain a catalyst particulate material including particles having a predetermined grain size. The method includes subjecting the catalyst particulate material to a chlorinating treatment in the reaction zone at a predetermined temperature for a predetermined time period by putting the catalyst particulate material in contact with the chlorine containing gas. The method also includes applying an electromagnetic field to the chlorine-containing gas in the reaction zone to provide ionization of chlorine; thereby to cause a chemical reaction between platinum group metals and chlorine ions and provide a volatile platinum group metal-containing chloride product in the reaction zone. Following this, the volatile platinum group metal-containing chloride product is cooled to convert the product into solid phase platinum group metal-containing materials.
Abstract:
A method for recovery of platinum group metals from a spent catalyst is described. The method includes crushing the spent catalyst to obtain a catalyst particulate material including particles having a predetermined grain size. The method includes subjecting the catalyst particulate material in the reaction zone at a predetermined temperature for a predetermined time period in contact with solid chlorine-containing material and solid silicon-containing material to obtain volatile platinum group metal-containing chloride product, and cooling to convert the product into solid phase platinum group metal-containing materials.
Abstract:
The present invention relates to an electrolytic process, methods and apparatus for the preparation of carbon monoxide and in particular to electrolysis of molten carbonates to yield carbon monoxide which may be used for chemical storage of electrical energy and further as chemical feedstock for other organic products.