摘要:
A fin-shaped heater stack includes first strata configured to support and form fluid heater elements responsive to repetitive electrical activation and deactivation to produce repetitive cycles of ejection of a fluid, and second strata on the first strata to protect the fluid heater elements from adverse effects of the repetitive cycles of fluid ejection and of contact with the fluid. The first strata include a substrate having a front surface, and heater substrata supported on the front surface. The heater substrata have opposite facing side surfaces which extend approximately perpendicular to the front surface and an end surface interconnecting the side surfaces which extends approximately parallel to the front surface such that the heater substrata is provided in either an upright or inverted fin-shaped configuration on the substrate with the fluid heater elements forming the opposite facing side surfaces of the heat substrata.
摘要:
A fin-shaped heater stack includes first strata configured to support and form fluid heater elements responsive to repetitive electrical activation and deactivation to produce repetitive cycles of ejection of a fluid, and second strata on the first strata to protect the fluid heater elements from adverse effects of the repetitive cycles of fluid ejection and of contact with the fluid. The first strata include a substrate having a front surface, and heater substrata supported on the front surface. The heater substrata have opposite facing side surfaces which extend approximately perpendicular to the front surface and an end surface interconnecting the side surfaces which extends approximately parallel to the front surface such that the heater substrata is provided in either an upright or inverted fin-shaped configuration on the substrate with the fluid heater elements forming the opposite facing side surfaces of the heat substrata.
摘要:
A heater stuck includes first strata having a planar configuration supporting and forming a fluid heater element responsive to repetitive electrical activation and deactivation to produce repetitive cycles of fluid ejection from an ejection chamber above the heater element and second strata having a planar configuration coating the heater element of the first strata and being contiguous with the ejection chamber to protect the heater element. The first strata include a substrate and heater strata disposed on it and forming a cavity above the substrate and encompassed on three sides by the heater substrata. The heater substrata includes a pair of conductive layer portions constituting terminal leads disposed on the substrate at opposite sides of the cavity and a resistive layer disposed on the conductive layer portions and defining the fluid heater element that spans the top of the cavity.
摘要:
A heater stuck includes first strata having a planar configuration supporting and forming a fluid heater element responsive to repetitive electrical activation and deactivation to produce repetitive cycles of fluid ejection from an ejection chamber above the heater element and second strata having a planar configuration coating the heater element of the first strata and being contiguous with the ejection chamber to protect the heater element. The first strata include a substrate and heater strata disposed on it and forming a cavity above the substrate and encompassed on three sides by the heater substrata. The heater substrata includes a pair of conductive layer portions constituting terminal leads disposed on the substrate at opposite sides of the cavity and a resistive layer disposed on the conductive layer portions and defining the fluid heater element that spans the top of the cavity.
摘要:
Methods are described for forming a fluid ejection device on a substrate having a first surface and a second surface, the first surface having plurality of electrical heater elements. A sacrificial polymer layer is added over the first surface, a conformal material over the sacrificial polymer layer forms a nozzle layer, the sacrificial polymer is then removed to form ink ejection chambers, the nozzle layer is removed to form nozzle holes, a mask layer is used to form an exposed region and an unexposed region, the exposed region defining a central ink via, which is then etched to form the central ink via.
摘要:
A heater stuck includes first strata having a planar configuration supporting and forming a fluid heater element responsive to repetitive electrical activation and deactivation to produce repetitive cycles of fluid ejection from an ejection chamber above the heater element and second strata having a planar configuration coating the heater element of the first strata and being contiguous with the ejection chamber to protect the heater element. The first strata include a substrate and heater strata disposed on it and forming a cavity above the substrate and encompassed on three sides by the heater substrata. The heater substrata includes a pair of conductive layer portions constituting terminal leads disposed on the substrate at opposite sides of the cavity and a resistive layer disposed on the conductive layer portions and defining the fluid heater element that spans the top of the cavity.
摘要:
A method for forming an ink jetting device includes providing a silicon substrate having a first surface having formed thereon a plurality of electrical heater elements to form a first upper exposed surface; depositing a polymer over the first upper exposed surface to form a sacrificial polymer layer; patterning the sacrificial polymer layer to form a second exposed upper surface; depositing a conformal material over the second exposed upper surface to form a conformal nozzle layer; patterning the conformal nozzle layer to form a plurality of nozzle holes located over the electrical heater elements; patterning a mask layer to form an exposed region of the second surface of the silicon substrate that defines a location of a central ink via; etching the exposed region to form the central ink via; and removing a portion of a remainder of the polymer layer to form ink ejection chambers.
摘要:
A heater stack includes first strata configured to support and form a fluid heater element responsive to repetitive electrical activation and deactivation to produce cycles of fluid ejection and second strata overlying the first strata to protect the heater element. A decomposed sacrificial layer of a preselected polymer between the substrate and a heater substrata containing the heater element provides a decoupled relationship between them which, during a heat-up period of each cycle, results in the heater element buckling out of physical contact with substrate enabling the heater element to transfer heat energy for producing fluid ejection into the fluid without transferring any into the substrate whereas the decoupled relationship, during the next following cool-down period of each cycle, results in the heater element de-buckling back into physical contact with the substrate enabling the heater element transfer residual heat energy to the substrate.
摘要:
A heater stack includes first strata configured to support and form a fluid heater element responsive to repetitive electrical activation and deactivation to produce repetitive cycles of fluid ejection from an ejection chamber above the heater element and second strata overlying the first strata and contiguous with the ejection chamber to protect the heater element. The first strata includes a substrate with a cavity formed either in or above the substrate, a heater substrata overlying the cavity and substrate, and a decomposed layer of material between the substrate and heater substrata and processed to provide the cavity substantially empty of the layer of material such that the cavity provides a means which, during repetitive electrical activation, enables the heater element to transfer heat energy into the fluid in the ejection chamber for producing ejection of fluid therefrom substantially without transferring heat energy into the substrate.
摘要:
A heater stuck includes first strata having a planar configuration supporting and forming a fluid heater element responsive to repetitive electrical activation and deactivation to produce repetitive cycles of fluid ejection from an ejection chamber above the heater element and second strata having a planar configuration coating the heater element of the first strata and being contiguous with the ejection chamber to protect the heater element. The first strata include a substrate and heater strata disposed on it and forming a cavity above the substrate and encompassed on three sides by the heater substrata. The heater substrata includes a pair of conductive layer portions constituting terminal leads disposed on the substrate at opposite sides of the cavity and a resistive layer disposed on the conductive layer portions and defining the fluid heater element that spans the top of the cavity.