摘要:
An apparatus and method to replicate one or more files between non-symmetric storage systems are disclosed. The method supplies a first storage system comprising a first configuration, a first volume, a first file system, and a first replication appliance comprising first replication appliance memory. The method further supplies a second storage system comprising a second configuration, a second volume, a second file system, and a second replication appliance comprising second replication appliance memory, where the first configuration differs from the second configuration. The first storage system receives a dataset, writes that dataset to the first volume as a first file. Applicants' method then replicates the first file to the second volume as a second file, and maintains in the second replication appliance memory a second replication appliance mapping associating the first file with the second file.
摘要:
A method to adjust the data transfer rate for one of (N) primary backup appliances. The method forms by a first primary backup appliance at least one consistent transactions set. The first primary backup appliance receives the (n)th status signal, and the (n+1)th status signal from each of the other (N−1) primary backup appliances. The method calculates the (n)th effective bandwidth for each of the (N) primary backup appliances, the (n)th time to complete for each of the (N) primary backup appliances, and the (n)th effective aggregate bandwidth for all (N) primary appliances. If the (n)th time to complete for the first primary backup appliance is greater than the (n)th time to complete for each of the other (N−1) primary backup appliances, then the method provides at least one consistent transactions set from the first primary backup appliance to a first secondary backup appliance with no delay.
摘要:
A method to adjust the data transfer rate for one of (N) primary backup appliances. The method forms by a first primary backup appliance at least one consistent transactions set. The first primary backup appliance receives the (n)th status signal, and the (n+1)th status signal from each of the other (N−1) primary backup appliances. The method calculates the (n)th effective bandwidth for each of the (N) primary backup appliances, the (n)th time to complete for each of the (N) primary backup appliances, and the (n)th effective aggregate bandwidth for all (N) primary appliances. If the (n)th time to complete for the first primary backup appliance is greater than the (n)th time to complete for each of the other (N−1) primary backup appliances, then the method provides at least one consistent transactions set from the first primary backup appliance to a first secondary backup appliance with no delay.
摘要:
A method is provided to improve the efficiency of the transmission of consistency groups across multiple storage components by ensuring that volume transactions are evenly allocated among backup components. Each volume is initially assigned to a specified backup component. Once a color period begins, volume transactions are transmitted to the assigned backup component. Each backup component accumulates data transfer information for its assigned volumes throughout at least a portion of the color period and calculates a new volume assignment for the next color period. Before the start of the next color period, a captain storage controller transmits any new assignments to the backup components. During a next color period, the process is repeated using the new assignments.
摘要:
A method, apparatus, and article of manufacture containing instructions for processing multiple point-in-time consistent data sets. The method consists of creating multiple point-in-time data sets associated with a backup appliance which is associated with backup storage. Upon the transfer of a first update from a primary storage controller to the backup appliance, a determination is made whether the update affects data stored in the backup storage has been unchanged following the creation of the respective data sets. If the update does affect data which is unchanged following the creation of a data set, the current, non-updated data is read from the backup storage. A copy of the current, non-updated data thus read from the backup storage is stored in a storage location which can be one of the data sets or an independent memory location. In addition, pointers are associated with the remaining applicable data sets and directed to the copy at its storage location. Subsequently, the update is applied to the data on the backup storage device. In the event an update is subsequently transferred from the primary storage controller to the backup appliance which affects data stored in backup storage which has already been changed since the creation of an applicable data set, no further data is written to the applicable data set and the update is applied to the backup storage.
摘要:
A method to select a captain control node from a plurality of interconnected control nodes is disclosed. The method provides by each of the plurality of control nodes a first signal to each of the other control nodes, and then receives by each of the plurality of control nodes, a response signal from each of the other control nodes. The method then calculates by each of the plurality of control nodes individual response times for each of the other control nodes, and determines by each control node its aggregate response time. The method then determines whether to select a captain control node using the aggregate response times. If the captain control node is selected using the aggregate response times, then the method then determines the minimum aggregate response time, and designates the control node having that minimum aggregate response time the captain control node.
摘要:
An apparatus, system, and method are disclosed for a read-before-write storage controller instruction. A sequencer receives an atomic read-before-write instruction comprising new data, a target address for the new data, and an undo log address. An I/O unit reads old data from the target address, writes the old data and the target address to the undo log address, and writes the new data to the target address as directed by the sequencer.
摘要翻译:公开了一种读写前存储控制器指令的装置,系统和方法。 定序器接收包括新数据,新数据的目标地址和撤销日志地址的原子预写指令。 I / O单元从目标地址读取旧数据,将旧数据和目标地址写入撤销日志地址,并按照定序器的指示将新数据写入目标地址。
摘要:
An apparatus, system, and method are disclosed for a read-before-write storage controller instruction. A sequencer receives an atomic read-before-write instruction comprising new data, a target address for the new data, and an undo log address. An I/O unit reads old data from the target address, writes the old data and the target address to the undo log address, and writes the new data to the target address as directed by the sequencer.
摘要翻译:公开了一种读写前存储控制器指令的装置,系统和方法。 定序器接收包括新数据,新数据的目标地址和撤销日志地址的原子预写指令。 I / O单元从目标地址读取旧数据,将旧数据和目标地址写入撤销日志地址,并按照定序器的指示将新数据写入目标地址。
摘要:
An apparatus, system, and method are disclosed for switching a volume address association in a point-in-time copy relationship. A copy module creates a point-in-time copy structure of a source volume at a target volume. A migration module copies data from the source volume to the target volume. A detection module detects data corruption in the source volume. A switch module switches a logical volume address from a source volume address of the source volume to a target volume address of the target volume in response to detecting the data corruption, redirecting data reads and writes to the target volume. In one embodiment, a tracking module tracks a current target volume copy of source volume data and redirects an access for source volume data without the current target volume copy to the source volume.
摘要:
A method for managing operations in a data storage system comprising at least a first storage controller operating according to a plurality of operation states set by a managing entity is provided. The method comprises the first storage controller performing a first operation associated with a first operation state, in response to the managing entity updating state information stored in a data structure readable by the first storage controller.