Multiple Domain Anomaly Detection System and Method Using Fusion Rule and Visualization
    1.
    发明申请
    Multiple Domain Anomaly Detection System and Method Using Fusion Rule and Visualization 审中-公开
    多域异常检测系统和融合规则与可视化方法

    公开(公告)号:US20110295783A1

    公开(公告)日:2011-12-01

    申请号:US13204713

    申请日:2011-08-07

    IPC分类号: G06F15/18

    CPC分类号: G06F17/30702

    摘要: The present invention discloses various embodiments of multiple domain anomaly detection systems and methods. In one embodiment of the invention, a multiple domain anomaly detection system uses a generic learning procedure per domain to create a “normal data profile” for each domain based on observation of data per domain, wherein the normal data profile for each domain can be used to determine and compute domain-specific anomaly data per domain. Then, domain-specific anomaly data per domain can be analyzed together in a cross-domain fusion data analysis using one or more fusion rules. The fusion rules may involve comparison of domain-specific anomaly data from multiple domains to derive a multiple-domain anomaly score meter for a particular cross-domain analysis task. The multiple domain anomaly detection system and its related method may also utilize domain-specific anomaly indicators of each domain to derive a cross-domain anomaly indicator using the fusion rules.

    摘要翻译: 本发明公开了多域异常检测系统和方法的各种实施例。 在本发明的一个实施例中,多域异常检测系统使用每个域的通用学习过程,基于每个域的数据观察为每个域创建“正常数据简档”,其中可以使用每个域的正常数据简档 确定和计算每个域的特定于异常的数据。 然后,可以在使用一个或多个融合规则的跨域融合数据分析中一起分析每个域的域特异性异常数据。 融合规则可能涉及到来自多个域的域特异性异常数据的比较,以导出用于特定跨域分析任务的多域异常得分计。 多域异常检测系统及其相关方法还可以利用每个域的域特异性异常指标,使用融合规则导出跨域异常指标。