NANOBUBBLE GENERATION SYSTEM USING FRICTION

    公开(公告)号:US20220323916A1

    公开(公告)日:2022-10-13

    申请号:US17767370

    申请日:2020-07-30

    IPC分类号: B01F23/231 B01F25/41

    摘要: The present disclosure relates to a nanobubble generation system using friction in which a frictional force is applied to bubbles included in a gas-liquid mixed fluid so that the atomization of the bubbles is induced and nanobubbles are generated. The nanobubble generation system includes: a chamber including an inlet, an outlet, and an internal space S configured to atomize bubbles included in a gas-liquid mixed fluid; one or more strikers each including a plurality of protrusions provided on a body thereof to simultaneously apply impact to the gas-liquid mixed fluid that flows into the chamber and swirl the fluid in order to cause the gas-liquid mixed fluid to rub against an inner wall of the chamber, the strikers being provided on the driving shaft; a plurality of friction elements provided on the driving shaft in order to apply frictional force to the gas-liquid mixed fluid; and a driving mechanism including the driving shaft and configured to rotate the striker and the friction elements, wherein the friction elements are arranged on the driving shaft to be spaced apart from each other at a predetermined interval, and peripheral surfaces of bodies of the friction elements directly face the inner wall of the chamber with a predetermined distance therebetween.

    Flow Path Member for Generating Nano-Bubbles, and Integrated Flow Path Unit and Nano-Bubble Generator Using Same

    公开(公告)号:US20220212152A1

    公开(公告)日:2022-07-07

    申请号:US17272850

    申请日:2020-04-07

    申请人: Young Ho YOO

    IPC分类号: B01F23/231

    摘要: The present disclosure relates to a fluid path member for generating nano-bubbles, and a fluid path integrator and a nano-bubble generator that use the same. The fluid path member may be configured such that a perimeter length of a cross-section of a fluid path is greater than a cross-sectional area of the fluid path so as to maximize a friction area per volume of fluid. In addition, the fluid path member may be configured such that a single fluid path is continuously formed over several tens of meters or more without a joint. Further, the fluid path member may be configured with a high density. Accordingly, the fluid path member may have improved ability to generate the nano-bubbles. A fluid path member configured to generate nano-bubbles according to some embodiments of the present disclosure includes a body formed as a bendable single tube, wherein the body is configured such that one or more dividing walls dividing a fluid path space inside a fluid path so as to expand a surface area and a friction area of a fluid are continuously integrally formed along a flow direction of the fluid, wherein the body is formed of a soft material of any one of silicone, rubber, and soft resin material so as to be freely bent and wound, and wherein the body is manufactured by extrusion molding such that the one or more dividing walls are continuously formed in a longitudinal direction of the body.