摘要:
Disclosed are an anode active material, a non-aqueous lithium secondary battery, and a preparation method thereof. The surface of a carbonaceous material is modified without using an electrolyte additive, and the reactivity and structural stability of the surface is improved, thereby obtaining long lifetime characteristics without deteriorating charge/discharge efficiency and rate characteristics when applied as an anode active material of a non-aqueous lithium secondary battery. The anode active material comprises a carbonaceous material, and a coating layer formed on the surface of the carbonaceous material through hetero atom substitution, wherein the hetero atom can be phosphorus (P) or sulfur (S). A side reaction with an electrolyte on the surface of the carbonaceous material is inhibited and the structural stability of the surface is enhanced by forming a coating layer on the surface of the carbonaceous material with a hetero atom such as phosphorus (P) or sulfur (S).
摘要:
The disclosure relates to an anode active material, a non-aqueous lithium secondary battery, and a manufacturing method thereof. The anode active material of this disclosure comprises a carbon-based material, and a coating film formed on the surface of the carbon-based material by performing heat treatment using an ammonia-based compound. The coating film may be formed on the surface of the carbon-based material through a thermal decomposition method using 10% or less by weight of the ammonia-based compound with respect to the carbon-based material. Since the surface of the carbon-based material is thermally treated using the ammonia-based compound, side reaction of the carbon-based material with an electrolyte at the surface thereof can be suppressed and structural stability can be enhanced, thereby improving battery lifespan and high-rate capability of a non-aqueous lithium secondary battery.
摘要:
The disclosure relates to an anode active material, a non-aqueous lithium secondary battery, and a manufacturing method thereof. The anode active material of this disclosure comprises a carbon-based material, and a coating film formed on the surface of the carbon-based material by performing heat treatment using an ammonia-based compound. The coating film may be formed on the surface of the carbon-based material through a thermal decomposition method using 10% or less by weight of the ammonia-based compound with respect to the carbon-based material. Since the surface of the carbon-based material is thermally treated using the ammonia-based compound, side reaction of the carbon-based material with an electrolyte at the surface thereof can be suppressed and structural stability can be enhanced, thereby improving battery lifespan and high-rate capability of a non-aqueous lithium secondary battery.