Abstract:
A coil control device of a magnetic resonance imaging system includes a DC-DC switching converter and a controller. The DC-DC switching converter is configured for switching and converting a DC power supply to a DC current or a DC voltage. An input end of the DC-DC switching converter is connected in parallel to the DC power supply. The controller is configured to control the DC-DC switching converter to switch and provide the DC current or the DC voltage. In some embodiments of the coil control device described herein, two power supplies (e.g., +15 V and −32 V) may be reduced to one power supply (e.g., +15 V), thereby saving energy and foregoing a water-cooling system.
Abstract:
A DC-DC Buck circuit has a DC input terminal, a DC output terminal, a ground terminal, an inductor, a capacitor, a sampling resistor, a PWM control chip and a DrMOS chip. The output of the driver pin of the PWM control chip is unrelated to the voltage between the inductor and the sampling resistor. The DC-DC Buck circuit can produce a larger output voltage while also being compatible with a DrMOS chip.
Abstract:
An RF coil device and an MRI system are provided. The RF coil device includes m coil elements, where m is an integer greater than 1. The RF coil device also includes an RF switch control unit including n output terminals and m input terminals connected to the m coil elements, respectively, where n is an integer greater than or equal to 1 and less than m. The RF coil device includes a decoder for outputting a control signal to the RF switch control unit according to a received control command. The RF switch control unit connects each of not more than n input terminals to a different output terminal according to the control signal.
Abstract:
A coil control device of a magnetic resonance imaging system includes a DC-DC switching converter and a controller. The DC-DC switching converter is configured for switching and converting a DC power supply to a DC current or a DC voltage. An input end of the DC-DC switching converter is connected in parallel to the DC power supply. The controller is configured to control the DC-DC switching converter to switch and provide the DC current or the DC voltage. In some embodiments of the coil control device described herein, two power supplies (e.g., +15 V and −32 V) may be reduced to one power supply (e.g., +15 V), thereby saving energy and foregoing a water-cooling system.
Abstract:
A DC-DC Buck circuit has a DC input terminal, a DC output terminal, a ground terminal, an inductor, a capacitor, a sampling resistor, a PWM control chip and a DrMOS chip. The output of the driver pin of the PWM control chip is unrelated to the voltage between the inductor and the sampling resistor. The DC-DC Buck circuit can produce a larger output voltage while also being compatible with a DrMOS chip.
Abstract:
An RF coil device and an MRI system are provided. The RF coil device includes m coil elements, where m is an integer greater than 1. The RF coil device also includes an RF switch control unit including n output terminals and m input terminals connected to the m coil elements, respectively, where n is an integer greater than or equal to 1 and less than m. The RF coil device includes a decoder for outputting a control signal to the RF switch control unit according to a received control command. The RF switch control unit connects each of not more than n input terminals to a different output terminal according to the control signal.