摘要:
A main pole layer of a magnetic head includes a first portion disposed at a distance from a medium facing surface, and a second portion that is smaller in thickness than the first portion and disposed between the first portion and the medium facing surface. The step of forming the main pole layer includes the steps of forming a plating layer such that one of ends of the plating layer closer to the medium facing surface is located at a position that coincides with the position of one of ends of the first portion closer to the medium facing surface; forming a first nonmagnetic layer to cover the plating layer; polishing the first nonmagnetic layer and the plating layer; forming a space by removing the plating layer; forming a magnetic layer, which will be the main pole layer, in the space and on the top surface of the first nonmagnetic layer; forming a second nonmagnetic layer to cover the magnetic layer; and polishing the second nonmagnetic layer and the magnetic layer.
摘要:
A main pole layer of a magnetic head includes a first portion disposed at a distance from a medium facing surface, and a second portion that is smaller in thickness than the first portion and disposed between the first portion and the medium facing surface. The step of forming the main pole layer includes the steps of forming a plating layer such that one of ends of the plating layer closer to the medium facing surface is located at a position that coincides with the position of one of ends of the first portion closer to the medium facing surface; forming a first nonmagnetic layer to cover the plating layer; polishing the first nonmagnetic layer and the plating layer; forming a space by removing the plating layer; forming a magnetic layer, which will be the main pole layer, in the space and on the top surface of the first nonmagnetic layer; forming a second nonmagnetic layer to cover the magnetic layer; and polishing the second nonmagnetic layer and the magnetic layer.
摘要:
Provided is a thin film magnetic head capable of securing recording characteristics even in the case where a return pole layer is disposed on a medium-outgoing side of the pole layer. The return yoke layer is disposed on a trailing side of the pole layer, and a neck height NH is within a range of NH≦W1 (a width of a front end portion in a main pole layer)+0.05 μm, and a height ratio (a ratio of the neck height NH to a throat height TH) NH/TH is within a range of 0.5
摘要翻译:提供了即使在极性层的介质输出侧设置返回极层的情况下也能够确保记录特性的薄膜磁头。 返回轭层设置在极层的后侧,颈部高度NH在NH <= W 1(主极层的前端部的宽度)+0.05μm的范围内,并且 高度比(颈部高度NH与喉部高度TH的比)NH / TH在0.5
摘要:
A write head of a magnetic head for vertical magnetic recording comprises: a coil; a main pole layer that allows the magnetic flux corresponding to the magnetic field generated by the coil to pass therethrough and generates a write magnetic field; an auxiliary pole layer; a gap layer provided between the main pole layer and the auxiliary pole layer; and a yoke layer for magnetically coupling the main pole layer to the auxiliary pole layer. The main pole layer has a flat top surface. In the main pole layer the position in which the thickness starts to increase is located between the medium facing surface and the position in which the width starts to increase.
摘要:
A thin-film magnetic head comprises first and second magnetic layers, a gap layer provided between the first and second magnetic layers, and a thin-film coil at least a part of which is disposed between the first and second magnetic layers. The second magnetic layer has a pole portion layer, a yoke portion layer, and a coupling portion. The yoke portion layer is magnetically connected to the rear end surface of the pole portion layer and both side surfaces of the pole portion layer in the width direction. The rear end surface of the pole portion layer and the side surfaces of the pole portion layer in the width direction are each inclined relative to the direction perpendicular to the surface of the pole portion layer that faces the gap layer.
摘要:
Provided is a thin film magnetic head which enables both ensuring overwrite characteristics and preventing an adverse effect resulting from side erase, such as degradation in an output signal. An exposed surface of a magnetic pole portion layer is configured to have the shape of an asymmetric inverted trapezoid corresponding to a remaining region which remains after removing a width increasing region in the shape of a right triangle from a rectangular region on the side of a side edge. The side edge of the exposed surface is caused to correspond to the side on which a magnetic flux emitted from the magnetic pole portion layer onto a target track of a hard disk causes information to unintentionally overwrite existing information recorded on an adjacent track. This configuration allows preventing the exposed surface from extending to the adjacent track, thus preventing the adverse effect resulting from side erase.
摘要:
Provided is a thin film magnetic head capable of ensuring the strength of a perpendicular magnetic field and improving recording performance. A bottom pole portion layer and a top pole portion layer constituting a part of a main magnetic pole are formed so that a cross sectional area of a complex including front end portions of the bottom pole portion layer and the top pole portion layer is smaller than a cross sectional area of a complex including rear end portions thereof, and a width of a top edge in an exposed surface is larger than a width of a bottom edge, and is equal to or larger than a width of the exposed surface in a middle position between the top edge and the bottom edge. In recording, magnetic fluxes flowing in a main magnetic pole are focused toward an air bearing surface, and are concentrated on the front end portion of the top pole portion layer which is a main emitting portion of the magnetic fluxes, so sufficient magnetic fluxes can be supplied to the air bearing surface.
摘要:
Provided are a perpendicular magnetic write head capable of achieving the high performance and stability in the writing performance, and a method of manufacturing the same. On a trailing side of a main magnetic pole layer, disposed are a gap layer extending backward from an air bearing surface and an auxiliary magnetic pole layer extending backward from a position recessed from the air bearing surface. The auxiliary magnetic pole layer is partially overlapped on the gap layer. In case the auxiliary magnetic pole layer is formed using etching method in the process of manufacturing the perpendicular magnetic write head, the gap layer has a function as an etching stopper layer so that the main magnetic pole layer is protected; thereby the already-formed main magnetic pole layer is not subjected to etching.
摘要:
Provided is a thin-film magnetic head capable of writing data with high accuracy on a magnetic recording medium having high coercive force without heating. The head comprises an electromagnetic coil element comprising: a main magnetic pole; an auxiliary magnetic pole; and a write coil formed so as to pass through at least between the main magnetic pole and the auxiliary magnetic pole, for generating the write magnetic field. In this head, a part of the write coil has a layered structure of: a resonance coil layer for generating a resonance magnetic field having ferromagnetic resonance frequency of a magnetic recording layer of a magnetic recording medium or having a frequency in the vicinity thereof; and a write coil layer. And further, the resonance coil layer and the write coil layer sandwich an insulating layer therebetween.
摘要:
Provided is a thin-film magnetic head capable of writing data with high accuracy on a magnetic recording medium having high coercive force without heating. The head comprises an electromagnetic coil element comprising: a main magnetic pole; an auxiliary magnetic pole; and a write coil formed so as to pass through at least between the main magnetic pole and the auxiliary magnetic pole, for generating the write magnetic field. In this head, a part of the write coil has a layered structure of: a resonance coil layer for generating a resonance magnetic field having ferromagnetic resonance frequency of a magnetic recording layer of a magnetic recording medium or having a frequency in the vicinity thereof; and a write coil layer. And further, the resonance coil layer and the write coil layer sandwich an insulating layer therebetween.