摘要:
A method and system for intelligent digital subtraction is disclosed. The method and system for intelligent digital subtraction can be used in a roadmap application for a coronary intervention. A mask image is obtained with vessels highlighted by contrast media. A guide wire is inserted into the vessels, and a guide wire image is obtained. A direct subtraction image is generated from the guide wire image and the mask image. A reduced noise subtraction image is generated based on mutual image information between the subtraction image and the guide wire image and mutual image information between the subtraction image and the mask image.
摘要:
A method and system for intelligent digital subtraction is disclosed. The method and system for intelligent digital subtraction can be used in a roadmap application for a coronary intervention. A mask image is obtained with vessels highlighted by contrast media. A guide wire is inserted into the vessels, and a guide wire image is obtained. A direct subtraction image is generated from the guide wire image and the mask image. A reduced noise subtraction image is generated based on mutual image information between the subtraction image and the guide wire image and mutual image information between the subtraction image and the mask image.
摘要:
A method and system for image quality assessment is disclosed. The image quality assessment method is a no-reference method for objectively assessing the quality of medical images. This method is guided by the human vision model in order to accurately reflect human perception. A region of interest (ROI) of medical image is divided into non-overlapping blocks of equal size. Each of the blocks is categorized as a smooth block, a texture block, or an edge block. A perceptual sharpness measure, which is weighted by local contrast, is calculated for each of the edge blocks. A perceptual noise level measure, which is weighted by background luminance, is calculated for each of the smooth blocks. A sharpness quality index is determined based on the perceptual sharpness measures of all of the edge blocks, and a noise level quality index is determined based on the perceptual noise level measures of all of the smooth blocks. An overall image quality index can be determined by using task specific machine learning of samples of annotated images. The image quality assessment method can be used in applications, such as video/image compression and storage in healthcare and homeland security, and band-width limited wireless communication.
摘要:
A method and system for image quality assessment is disclosed. The image quality assessment method is a no-reference method for objectively assessing the quality of medical images. This method is guided by the human vision model in order to accurately reflect human perception. A region of interest (ROI) of medical image is divided into non-overlapping blocks of equal size. Each of the blocks is categorized as a smooth block, a texture block, or an edge block. A perceptual sharpness measure, which is weighted by local contrast, is calculated for each of the edge blocks. A perceptual noise level measure, which is weighted by background luminance, is calculated for each of the smooth blocks. A sharpness quality index is determined based on the perceptual sharpness measures of all of the edge blocks, and a noise level quality index is determined based on the perceptual noise level measures of all of the smooth blocks. An overall image quality index can be determined by using task specific machine learning of samples of annotated images. The image quality assessment method can be used in applications, such as video/image compression and storage in healthcare and homeland security, and band-width limited wireless communication.
摘要:
A method and system for correcting butting artifacts in x-ray images is disclosed. In order to correct a butting artifact in an x-ray image, a butting artifact region in the x-ray image is normalized. Multiple intensity shift estimators are calculated for each pixel of each line of the butting artifact. Confidence intervals are calculated for each intensity shift estimator. A multiple hypothesis hidden Markov model (MH-HMM) is formulated based on the intensity shift operators and confidence measures subject to a smoothness constraint, and the MH-HMM is solved to determine intensity shift values for each pixel. A corrected image is generated by adjusting the intensity of each pixel of the butting artifact based on the intensity shift value for that pixel.
摘要:
A method and system for correcting butting artifacts in x-ray images is disclosed. In order to correct a butting artifact in an x-ray image, a butting artifact region in the x-ray image is normalized. Multiple intensity shift estimators are calculated for each pixel of each line of the butting artifact. Confidence intervals are calculated for each intensity shift estimator. A multiple hypothesis hidden Markov model (MH-HMM) is formulated based on the intensity shift operators and confidence measures subject to a smoothness constraint, and the MH-HMM is solved to determine intensity shift values for each pixel. A corrected image is generated by adjusting the intensity of each pixel of the butting artifact based on the intensity shift value for that pixel.
摘要:
A method for enhancing stent visibility in digital medical images includes providing a time series of 2-dimensional (2D) images of a stent in a vessel, estimating motion of the stent in a subset of images of the time series of images, estimating motion of clutter in the subset of images, where clutter comprises anatomical structures other than the stent, estimating a clutter layer in the subset of images from the estimated clutter motion, estimating a stent layer in the subset of images from the clutter layer and the estimated clutter motion, and minimizing a functional of the estimated stent motion, the estimated stent layer, the estimated clutter motion, and the estimated clutter layer to in calculate a refined stent layer image, where the refined stent layer image has enhanced visibility of the stent.
摘要:
A method for temporally filtering medical images during a fluoroscopy guided intervention procedure includes providing a mask image, a fluoroscopy intervention image acquired at a current time during a medical intervention procedure, forming a subtraction image by subtracting the mask image from the intervention image, calculating a motion image of a moving structure in the subtraction image, forming a residual image by subtracting the motion image from the subtraction image, temporally filtering the residual image with a filtered image from a previous time, and adding the motion image to the temporally filtered residual image.
摘要:
A method for enhancing stent visibility in digital medical images includes providing a time series of 2-dimensional (2D) images of a stent in a vessel, estimating motion of the stent in a subset of images of the time series of images, estimating motion of clutter in the subset of images, where clutter comprises anatomical structures other than the stent, estimating a clutter layer in the subset of images from the estimated clutter motion, estimating a stent layer in the subset of images from the clutter layer and the estimated clutter motion, and minimizing a functional of the estimated stent motion, the estimated stent layer, the estimated clutter motion, and the estimated clutter layer to in calculate a refined stent layer image, where the refined stent layer image has enhanced visibility of the stent.
摘要:
A method for temporally filtering medical images during a fluoroscopy guided intervention procedure includes providing a mask image, a fluoroscopy intervention image acquired at a current time during a medical intervention procedure, forming a subtraction image by subtracting the mask image from the intervention image, calculating a motion image of a moving structure in the subtraction image, forming a residual image by subtracting the motion image from the subtraction image, temporally filtering the residual image with a filtered image from a previous time, and adding the motion image to the temporally filtered residual image.