Vacuum chamber structure of ultra-high gravity geotechnical centrifuge device

    公开(公告)号:US12226785B2

    公开(公告)日:2025-02-18

    申请号:US16981691

    申请日:2019-05-31

    Abstract: A vacuum chamber structure of an ultra-high gravity geotechnical centrifuge device, comprising: a cylindrical shell, a convex head, a bottom head, a lower bearing sealing cover, and a vacuum pressure-bearing chamber formed by sealing a top cylindrical cylinder and an upper sealing plate with sealing rings; wherein a high-speed rotor system is enclosed in the vacuum pressure-bearing chamber, and a cylindrical cooling device is installed between an internal side of the cylindrical shell and the high-speed rotor system. An annular cooling device is provided directly above the hanging baskets on both sides of the centrifuge arm. A vibration isolation expansion joint is arranged at the intersection of the high-speed rotor system and the cylindrical cylinder, which isolates the vibration of the main engine from the vacuum chamber and greatly reduces the vibration.

    Vacuum chamber structure of ultra-high gravity geotechnical centrifuge device

    公开(公告)号:US20230102671A1

    公开(公告)日:2023-03-30

    申请号:US16981691

    申请日:2019-05-31

    Abstract: A vacuum chamber structure of an ultra-high gravity geotechnical centrifuge device, comprising: a cylindrical shell, a convex head, a bottom head, a lower bearing sealing cover, and a vacuum pressure-bearing chamber formed by sealing a top cylindrical cylinder and an upper sealing plate with sealing rings; wherein a high-speed rotor system is enclosed in the vacuum pressure-bearing chamber, and a cylindrical cooling device is installed between an internal side of the cylindrical shell and the high-speed rotor system. An annular cooling device is provided directly above the hanging baskets on both sides of the centrifuge arm. A vibration isolation expansion joint is arranged at the intersection of the high-speed rotor system and the cylindrical cylinder, which isolates the vibration of the main engine from the vacuum chamber and greatly reduces the vibration. The lower bearing and the upper bearing system are placed outside the vacuum pressure chamber, so that the centrifuge operates under vacuum with low power consumption, while the bearing system reliably operates under normal pressure, the present invention is capable of making the gravity acceleration of the ultra-gravity geotechnical centrifuge reach more than 1500 g, and solves the problems of large vibration and difficult heat dissipation of the ultra-high gravity centrifuge.

Patent Agency Ranking