摘要:
Embodiments of rich text modeling for speech synthesis are disclosed. In operation, a text-to-speech engine refines a plurality of rich context models based on decision tree-tied Hidden Markov Models (HMMs) to produce a plurality of refined rich context models. The text-to-speech engine then generates synthesized speech for an input text based at least on some of the plurality of refined rich context models.
摘要:
Embodiments of rich context modeling for speech synthesis are disclosed. In operation, a text-to-speech engine refines a plurality of rich context models based on decision tree-tied Hidden Markov Models (HMMs) to produce a plurality of refined rich context models. The text-to-speech engine then generates synthesized speech for an input text based at least on some of the plurality of refined rich context models.
摘要:
Hidden Markov Models HMM trajectory tiling (HTT)-based approaches may be used to synthesize speech from text. In operation, a set of Hidden Markov Models (HMMs) and a set of waveform units may be obtained from a speech corpus. The set of HMMs are further refined via minimum generation error (MGE) training to generate a refined set of HMMs. Subsequently, a speech parameter trajectory may be generated by applying the refined set of HMMs to an input text. A unit lattice of candidate waveform units may be selected from the set of waveform units based at least on the speech parameter trajectory. A normalized cross-correlation (NCC)-based search on the unit lattice may be performed to obtain a minimal concatenation cost sequence of candidate waveform units, which are concatenated into a concatenated waveform sequence that is synthesized into speech.
摘要:
Embodiments of small footprint text-to-speech engine are disclosed. In operation, the small footprint text-to-speech engine generates a set of feature parameters for an input text. The set of feature parameters includes static feature parameters and delta feature parameters. The small footprint text-to-speech engine then derives a saw-tooth stochastic trajectory that represents the speech characteristics of the input text based on the static feature parameters and the delta parameters. Finally, the small footprint text-to-speech engine produces a smoothed trajectory from the saw-tooth stochastic trajectory, and generates synthesized speech based on the smoothed trajectory.
摘要:
A speech recognition system trains a plurality of feature transforms and a plurality of acoustic models using an irrelevant variability normalization based discriminative training. The speech recognition system employs the trained feature transforms to absorb or ignore variability within an unknown speech that is irrelevant to phonetic classification. The speech recognition system may then recognize the unknown speech using the trained recognition models. The speech recognition system may further perform an unsupervised adaptation to adapt the feature transforms for the unknown speech and thus increase the accuracy of recognizing the unknown speech.