摘要:
An all-solid-state electrochromic device comprises a transparent base material, and an electrochromic multilayer-stack structure formed on the transparent base material. The electrochromic multilayer-stack structure comprises a first transparent-conductive film formed on the transparent base material, an ion-storage layer formed on the first transparent-conductive film, a solid-electrolyte layer formed on the ion-storage layer, and an electrochromic layer formed on the solid-electrolyte layer. The electrochromic layer comprises a reflection-controllable electrochromic layer. In one exemplary embodiment, the electrochromic layer comprises a reflection-controllable layer that comprises at least one of antimony and an antimony-based alloy. A second transparent-conductive film can be formed on the reflection-controllable layer, or between the reflection-controllable layer and the solid-electrolyte layer. In one exemplary embodiment, the second transparent-conductive layer comprises a base metal and/or a base metal alloy.
摘要:
One exemplary embodiment of an electrochromic thin-film material comprises a metal-chalcogen compound; and/or a mixture or solid solution of one or more metal-rich metal-chalcogen compounds and/or lithium. One or more of the metals comprise Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Sb, or Bi, or combinations thereof; and one or more of the chalcogens comprise O, S, Se, or Te, or combinations thereof.
摘要:
One exemplary embodiment of an electrochromic thin-film material comprises a metal-chalcogen compound; and/or a mixture or solid solution of one or more metal-rich metal-chalcogen compounds and/or lithium. One or more of the metals comprise Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Sb, or Bi, or combinations thereof; and one or more of the chalcogens comprise O, S, Se, or Te, or combinations thereof.
摘要:
One exemplary embodiment of an electrochromic thin-film material comprises an alloy of antimony and one or more base metals; and/or an alloy of antimony, one or more base metals, and lithium; and/or an alloy of antimony, one or more base metals, lithium, and one or more noble metals. Another exemplary embodiment of an electrochromic thin-film material comprises a multilayer stack, the multilayer stack comprising at least one layer comprising one of antimony, antimony-lithium alloy, antimony-one or more base metals alloy, antimony-one or more base metals-lithium alloy, antimony-one or more base metals-one or more noble metals alloy, and antimony-one or more base metals-one or more noble metals-lithium alloy; and at least one alternating layer comprising one of a base metal and a base-metal alloy. One or more of the base metals comprise Co, Mn, Ni, Fe, Zn, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Cd, Mg, Al, Ga, In, Sn, Pb, and Bi, and alloys thereof.
摘要:
An all-solid-state electrochromic device comprises a transparent base material, and an electrochromic multilayer-stack structure formed on the transparent base material. The electrochromic multilayer-stack structure comprises a first transparent-conductive film formed on the transparent base material, an ion-storage layer formed on the first transparent-conductive film, a solid-electrolyte layer formed on the ion-storage layer, and an electrochromic layer formed on the solid-electrolyte layer. The electrochromic layer comprises a reflection-controllable electrochromic layer. In one exemplary embodiment, the electrochromic layer comprises a reflection-controllable layer that comprises at least one of antimony and an antimony-based alloy. A second transparent-conductive film can be formed on the reflection-controllable layer, or between the reflection-controllable layer and the solid-electrolyte layer. In one exemplary embodiment, the second transparent-conductive layer comprises a base metal and/or a base metal alloy.
摘要:
An electrochromic switching device comprises a counter electrode, an active electrode and an electrolyte layer disposed between the counter electrode and the active electrode. The active electrode comprises at least one of an oxide, a nitride, an oxynitrides, a partial oxide, a partial nitride and a partial oxynitride of at least one of Sb, Bi, Si, Ge, Sn, Te, N, P, As, Ga, In, Al, C, Pb and I. Upon application of a current to the electrochromic switching device, a compound comprising at least one of the alkali and the alkaline earth metal ion and an element of the active electrode is formed as part of the active electrode.
摘要:
An electrochromic switching device comprises a counter electrode, an active electrode and an electrolyte layer disposed between the counter electrode and the active electrode. The active electrode comprises at least one of an oxide, a nitride, an oxynitrides, a partial oxide, a partial nitride and a partial oxynitride of at least one of Sb, Bi, Si, Ge, Sn, Te, N, P, As, Ga, In, Al, C, Pb and I. Upon application of a current to the electrochromic switching device, a compound comprising at least one of the alkali and the alkaline earth metal ion and an element of the active electrode is formed as part of the active electrode.
摘要:
A multilayer solid-state electrolyte, solid-state battery cells including the same, and methods of making the electrolyte and the battery cells are disclosed. The multi-layer solid-state electrolyte includes a solid bulk electrolyte layer comprising carbon-doped lithium phosphorus oxynitride (LiPON) or WO3+x (where 0≤x≤1), and a solid anode interface layer comprising LiPON or a metal oxide that forms a stable complex oxide with lithium oxide and conducts lithium ions when lithiated. The anode interface layer has a thickness less than that of the bulk electrolyte layer. The method of making the multi-layer solid-state electrolyte includes depositing one of the solid bulk electrolyte layer and the solid anode interface layer on an active layer of a battery cell, then depositing the other layer on the one layer. As for the solid-state electrolyte, the anode interface layer has a thickness less than that of the bulk electrolyte layer.
摘要:
Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
摘要:
A nanostructured molecular unit and method for forming is described where a cationic porphyrin having an ethanolic substituent species and a metal in the porphyrin cavity is combined with an anionic porphyrin having a sulfonate substituent species and a metal in the porphyrin cavity to form by self-assembly a nanostructured molecular unit with a morphology comprising four dendritic elements connected at a central node.