摘要:
A method includes obtaining a combined data set that includes first and second imaging data sets. The first and second imaging data sets correspond to different imaging modalities. The method further includes determining a metric indicative of an alignment between the first and second imaging data sets in the combined data set. The method further includes presenting the metric in a human readable format.
摘要:
A medical imaging system includes a view transformation component (210) and a segment combiner (212). The transformation component (210) transforms projection data in each view of a plurality of individual segments, which each includes at least one view. The transformed projection data for substantially similar views across the plurality of individual segments have a common radius of rotation. The segment combiner (212) combines the transformed projection data to produce a single data set that includes the transformed projection data for each of the views of each of the plurality of individual segments.
摘要:
A medical imaging system includes a view transformation component (210) and a segment combiner (212). The transformation component (210) transforms projection data in each view of a plurality of individual segments, which each includes at least one view. The transformed projection data for substantially similar views across the plurality of individual segments have a common radius of rotation. The segment combiner (212) combines the transformed projection data to produce a single data set that includes the transformed projection data for each of the views of each of the plurality of individual segments.
摘要:
In an imaging method, estimated data is iteratively projected and backprojected. The iterative projecting and backprojecting includes projecting or backprojecting the estimated data along parallel paths each employing energy-dependent parameters appropriate for a different energy. During each iteration, the estimated data is adjusted based on comparison of the estimated data with measured data.
摘要:
In an imaging method, estimated data is iteratively projected and backprojected. The iterative projecting and backprojecting includes projecting or backprojecting the estimated data along parallel paths each employing energy-dependent parameters appropriate for a different energy. During each iteration, the estimated data is adjusted based on comparison of the estimated data with measured data.
摘要:
An imaging system (10) comprises at least one radiation detector (20) disposed adjacent a subject receiving aperture (18) to detect radiation from a subject, receive the radiation and generate measured data. An image processor (38) iteratively reconstructs the detected radiation into image representations, in each reconstruction iteration the image processor (38) applies noise reduction algorithms to at least a difference between the measured data and a portion of a previous iteration image representation.
摘要:
A medical imaging system (10) includes at least one radiation detection head (16) disposed adjacent a subject receiving aperture (18) to detect radiation from a subject. The detected radiation is reconstructed into at least one initial 2D projection image (μ). Resolution in each initial 2D image (μ) is restored by using the extended iterative constrained deconvolution algorithm by incorporating different estimates of the system response function which estimates correspond to different distances between the detection head and the origins of the detected radiation. Measured response functions are used to restore a series of images. The optimal image is determined by automatic searching with the figure of merit, by user's observation, or by using blind deconvolution for a concurrent estimating of the system response function and updating the original image.
摘要:
A method for non-rigid registration and fusion of images with physiological modeled organ motions resulting from respiratory motion and cardiac motion that are mathematically modeled with physiological constraints. A method of combining images comprises the steps of obtaining a first image dataset (24) of a region of interest of a subject and obtaining a second image dataset (34) of the region of interest of the subject. Next, a general model of physiological motion for the region of interest is provided (142). The general model of physiological motion is adapted with data derived from the first image data set (140) to provide a subject specific physiological model (154). The subject specific physiological model is applied (172) to the second image dataset (150) to provide a combined image (122).
摘要:
A medical imaging system (10) includes at least one radiation detection head (16) disposed adjacent a subject receiving aperture (18) to detect radiation from a subject. The detected radiation is reconstructed into at least one initial 2D projection image (μ). Resolution in each initial 2D image (μ) is restored by using the extended iterative constrained deconvolution algorithm by incorporating different estimates of the system response function which estimates correspond to different distances between the detection head and the origins of the detected radiation. Measured response functions are used to restore a series of images. The optimal image is determined by automatic searching with the figure of merit, by user's observation, or by using blind deconvolution for a concurrent estimating of the system response function and updating the original image.
摘要:
An imaging system (10) comprises at least one radiation detector (20) disposed adjacent a subject receiving aperture (18) to detect radiation from a subject, receive the radiation and generate measured data. An image processor (38) iteratively reconstructs the detected radiation into image representations, in each reconstruction iteration the image processor (38) applies noise reduction algorithms to at least a difference between the measured data and a portion of a previous iteration image representation.