Abstract:
A system composed of a function receive block and a function send block for a graphical, block-based modeling environment for graphical modeling of technical and mathematical relationships with a block diagram. Blocks of the block diagram have input ports and/or output ports, wherein the blocks can be connected through their ports by signal lines for data transmission. Especially flexible management of a functionality to be implemented is achieved in that the function receive block has a function receive port through which the function receive block can be assigned a functionality and only the interfaces of the assignable functionality are specified in the function receive block in the form of the number of inputs and/or the number of outputs of the functionality. The function send block has a function send port through which a functionality is sent out to an associated function receive block.
Abstract:
A computer-implemented method for generating a control program that is executable on a control system from a graphical control model. A better utilization of the control system is achieved in that the graphical control model is translated into program code such that the generated program code has at least one FXP operation and at least one FLP operation, and in that the generated program code is translated into the executable control program such that when the control program is executed on the control system a portion of the control program is executed on the FXP unit and another portion of the control program is executed on the FLP unit.
Abstract:
A computer-implemented method for computer-aided generation of an executable control program for controlling a control system with an electronic computing unit, wherein the functionality of the control program is at least partially described in a graphical model, and the graphical model includes at least one sub-model with at least one sub-functionality, wherein the graphical model is first translated into model code in a high-level programming language, and the model code is subsequently compiled into the control program that is executable on the control system. Manageability of sub-model functions of sub-models within a graphical model is improved by the means that the sub-model is translated into a sub-model code function in the high-level programming language, that the model is translated into comprehensive model code in the high-level programming language, and that the sub-model code function is called from the comprehensive model code by a pointer to the sub-model code function.
Abstract:
A method for the computer-aided generation of at least one part of an executable control program, particularly a measuring, control, regulating, and/or calibration program, for controlling a control system having at least one electronic processor unit is provided. The functionality of the control program is described at least partially in at least one graphical model and the graphical model is divided in hierarchical levels into submodels. A submodel can be divided nested into submodels of a lower hierarchical level, whereby values for options for the compiling of the graphical model to program code are preset and program code is generated from the model co-compiled to the executable control program. Values for options for the compiling of the graphical model to program code and to the executable control program can be preset thereby granularly with the automatic avoidance of conflicting presettings of values for these options.