Deep hybrid neural network for named entity recognition

    公开(公告)号:US11593558B2

    公开(公告)日:2023-02-28

    申请号:US15692392

    申请日:2017-08-31

    Applicant: eBay Inc.

    Abstract: In an example, a text sentence comprising a plurality of words is obtained. Each of the plurality of words is passed through a deep compositional character-to-word model to encode character-level information of each of the plurality of words into a character-to-word expression. The character-to-word expressions are combined with pre-trained word embeddings. The combined character-to-word expressions and pre-trained word embeddings are fed into one or more bidirectional long short-term memories to learn contextual information for each of the plurality of words. Then, sequential conditional random fields are applied to the contextual information for each of the plurality of words.

    DEEP HYBRID NEURAL NETWORK FOR NAMED ENTITY RECOGNITION

    公开(公告)号:US20190065460A1

    公开(公告)日:2019-02-28

    申请号:US15692392

    申请日:2017-08-31

    Applicant: eBay Inc.

    Abstract: In an example, a text sentence comprising a plurality of words is obtained. Each of the plurality of words is passed through a deep compositional character-to-word model to encode character-level information of each of the plurality of words into a character-to-word expression. The character-to-word expressions are combined with pre-trained word embeddings. The combined character-to-word expressions and pre-trained word embeddings are fed into one or more bidirectional long short-term memories to learn contextual information for each of the plurality of words. Then, sequential conditional random fields are applied to the contextual information for each of the plurality of words.

Patent Agency Ranking