Abstract:
A system to customize user experience based on brand resilience data is described. An example system includes a new session detector, a session type module, a brand resilience module, and a search strategy selector. The new session detector detects commencement of a user session in the on-line trading platform. The session type module examines the initial search request in a user session and determines whether the initial search request includes a phrase that represents a brand name. The brand resilience module examines brand resilience value assigned to the brand name. The search strategy selector selects, based on the brand resilience value, a search strategy for the user session.
Abstract:
The present disclosure is directed to apparatuses, systems, and methods for predicting item characteristic popularity—i.e., identifying item characteristics (e.g., item brands, item types, etc.) that are to eventually become popular. Something that is to eventually become popular is referred to herein as “pre-trend” or “cool.” In the embodiments described herein, electronic marketplace transaction data is analyzed to identify popular characteristics of items involved in recent transactions. The electronic marketplace transaction data is further analyzed to identify one or more users that executed transactions for items having these popular characteristics during a previous time period. These users' transaction histories are analyzed to determine what other item characteristics are prevalent in their more recent transactions, as these item characteristics can be identified as pre-trend/cool.