Abstract:
In a system and method of estimating and classifying a barcode using heuristic and statistical measures, a classification determination is generated for each of a plurality of estimated barcode digits that correspond to a decoded barcode estimation. The classification determination is selected from one of a first classification determination and a second classification determination. The first classification determinations among a plurality of estimation determinations are aggregated. The aggregated first classification determinations are compared to a first predetermined threshold to determine a validity of the decoded barcode estimation.
Abstract:
In a system and method of recognizing a barcode from a stream of video frames, a processor-implemented camera module receives a stream of video frames, with at least one video frame including a barcode. A processor-implemented barcode blur estimate module estimates an amount of defocus blur in a video frame. The processor-implemented barcode blur estimate module further estimates an identity of the barcode. A processor-implemented barcode localization module identifies a region of the video frame containing the barcode. A processor-implemented barcode geometric modeler module generates a geometric model of the barcode that includes an identified barcode deformity. A processor-implemented barcode decoder module decodes the barcode from the video frame using the estimated amount of defocus blur, the estimated identity of the barcode, and the geometric model of the barcode.
Abstract:
In a system and method of recognizing a barcode from a stream of video frames, a processor-implemented camera module receives a stream of video frames, with at least one video frame including a barcode. A processor-implemented barcode blur estimate module estimates an amount of defocus blur in a video frame. The processor-implemented barcode blur estimate module further estimates an identity of the barcode. A processor-implemented barcode localization module identifies a region of the video frame containing the barcode. A processor-implemented barcode geometric modeler module generates a geometric model of the barcode that includes an identified barcode deformity. A processor-implemented barcode decoder module decodes the barcode from the video frame using the estimated amount of defocus blur, the estimated identity of the barcode, and the geometric model of the barcode.
Abstract:
In a system and method of recognizing a barcode from a stream of video frames, a processor-implemented camera module receives a stream of video frames, with at least one video frame including a barcode. A processor-implemented barcode blur estimate module estimates an amount of defocus blur in a video frame. The processor-implemented barcode blur estimate module further estimates an identity of the barcode. A processor-implemented barcode localization module identifies a region of the video frame containing the barcode. A processor-implemented barcode geometric modeler module generates a geometric model of the barcode that includes an identified barcode deformity. A processor-implemented barcode decoder module decodes the barcode from the video frame using the estimated amount of defocus blur, the estimated identity of the barcode, and the geometric model of the barcode.
Abstract:
In a system and method of recognizing a barcode from a stream of video frames, a processor-implemented camera module receives a stream of video frames, with at least one video frame including a barcode. A processor-implemented barcode blur estimate module estimates an amount of defocus blur in a video frame. The processor-implemented barcode blur estimate module further estimates an identity of the barcode. A processor-implemented barcode localization module identifies a region of the video frame containing the barcode. A processor-implemented barcode geometric modeler module generates a geometric model of the barcode that includes an identified barcode deformity. A processor-implemented barcode decoder module decodes the barcode from the video frame using the estimated amount of defocus blur, the estimated identity of the barcode, and the geometric model of the barcode.
Abstract:
In a system and method of recognizing a barcode from a stream of video frames, a processor-implemented camera module receives a stream of video frames, with at least one video frame including a barcode. A processor-implemented barcode blur estimate module estimates an amount of defocus blur in a video frame. The processor-implemented barcode blur estimate module further estimates an identity of the barcode. A processor-implemented barcode localization module identifies a region of the video frame containing the barcode. A processor-implemented barcode geometric modeler module generates a geometric model of the barcode that includes an identified barcode deformity. A processor-implemented barcode decoder module decodes the barcode from the video frame using the estimated amount of defocus blur, the estimated identity of the barcode, and the geometric model of the barcode.
Abstract:
In a system and method of estimating and classifying a barcode using heuristic and statistical measures, a classification determination is generated for each of a plurality of estimated barcode digits that correspond to a decoded barcode estimation. The classification determination is selected from one of a first classification determination and a second classification determination. The first classification determinations among a plurality of estimation determinations are aggregated. The aggregated first classification determinations are compared to a first predetermined threshold to determine a validity of the decoded barcode estimation.