摘要:
A working oil chamber sealing system of a rotary vane steering gear actuator having a top end face of a respective segment of a housing that holds a segment top face horizontal seal. The segment top face horizontal seal having a sealing face which touches a rear face of a top cover. The top cover rear face holds an upper ring seal, a sealing face of which touches an outer circumferential edge of an upper end face of a rotor and also touches a sealing face inner edge of the segment top face horizontal seal and a sealing face inner edge of an upper horizontal vane seal of a rotor vane, respectively.
摘要:
In such a high lift twin-rudder system that: a pair of high lift rudders 1, 2 is arranged behind a single propeller 3; the respective high lift rudder 1, 2 has a top end plate 6, 7 and a bottom end plate 8, 9 at the top end and the bottom of a rudder blade 4, 5; the respective rudder blade 4, 5 is provided with a reaction fin 10, 11, protruding from an inboard face of the rudder blade 4, 5 on a nearly same level with the axis of the propeller 3, that is originated nearly from the leading edge portion toward the rear and has a fixed chord length; the reaction fin 10 of the rudder blade 4 that faces on the board-side where the propeller blades rotate in the ascending direction assumes a posture that makes such attack angle that the ratio of a forward vectored thrust to a drag, both produced by a propeller slip stream having a stream component in the ascending direction, becomes maximum; and the reaction fin 11 of the rudder blade 5 that faces on the board-side where the propeller blades rotate in the descending direction assumes a posture that makes such attack angle that the ratio of a forward vectored thrust to a drag, both produced by a propeller slip stream having a stream component in the descending direction, becomes maximum, the respective rudder blade 4, 5 is so constituted that a chord length is of 60˜45% of a propeller diameter.
摘要:
A digital twin computation section collects a speed of an own ship, a position of the own ship, and a heading of the own ship in real time, and reproduces an actual hull motion of the own ship realized at a current steering angle on a navigational electronic marine chart. A simulation computation section displays, on the navigational electronic marine chart, an assumed hull motion of the own ship determined by calculation that assumes that a force acting on the hull is a driving force at the current steering angle. A resultant force of external forces computation section calculates an acting direction and a magnitude of a resultant force of external forces acting on the hull based on a ship speed difference, ship position difference, and heading difference between the actual hull motion and the assumed hull motion.
摘要:
In collision-avoidance maneuvering in congested waters, an own ship is decelerated by astern power. The own ship is continuously navigated on a current target course with a propulsion propeller always rotated forward at the stern of the own ship. The astern power is generated as the propulsion of a propeller slipstream with rudder angles formed at a pair of right and left high-lift rudders disposed behind the propulsion propeller. In the decelerating maneuvering, the rudder angles formed at the high-lift rudders are controlled within a range from a rudder angle for applying a maximum propeller slipstream as the astern power to a rudder angle for eliminating the ahead power of the propeller slipstream, and the deceleration of the own ship is controlled by changing the astern power according to the rudder angles.
摘要:
In collision-avoidance maneuvering in congested waters, an own ship is decelerated by astern power. The own ship is continuously navigated on a current target course with a propulsion propeller always rotated forward at the stern of the own ship. The astern power is generated as the propulsion of a propeller slipstream with rudder angles formed at a pair of right and left high-lift rudders disposed behind the propulsion propeller. In the decelerating maneuvering, the rudder angles formed at the high-lift rudders are controlled within a range from a rudder angle for applying a maximum propeller slipstream as the astern power to a rudder angle for eliminating the ahead power of the propeller slipstream, and the deceleration of the own ship is controlled by changing the astern power according to the rudder angles.
摘要:
A working oil chamber sealing system of a rotary vane steering gear actuator having a top end face of a respective segment of a housing that holds a segment top face horizontal seal. The segment top face horizontal seal having a sealing face which touches a rear face of a top cover. The top cover rear face holds an upper ring seal, a sealing face of which touches an outer circumferential edge of an upper end face of a rotor and also touches a sealing face inner edge of the segment top face horizontal seal and a sealing face inner edge of an upper horizontal vane seal of a rotor vane, respectively.
摘要:
The inner cylindrical body is mounted on the top surface of the rudder-stock; the outer cylindrical body is put on the inner cylindrical body exteriorly; the gudgeon pin provided on the top reverse surface of the outer cylindrical body is inserted into the gudgeon provided on the top surface of the inner cylindrical body; the pin protruded on the top surface of the outer cylindrical body is inserted into the chest fixated to the supports; the rotational movement checking device, that obstructs the pin to rotate, and at the same time, permits it to be displaced in the radial direction, is provided inside the chest; the scale is provided on the outer circumferential surface of the inner cylindrical body; and, the rudder angle detecting optical sensors facing the scale are mounted on the inner circumferential surface of the outer cylindrical body.
摘要:
The inner cylindrical body is mounted on the top surface of the rudder-stock; the outer cylindrical body is put on the inner cylindrical body exteriorly; the gudgeon pin provided on the top reverse surface of the outer cylindrical body is inserted into the gudgeon provided on the top surface of the inner cylindrical body; the pin protruded on the top surface of the outer cylindrical body is inserted into the chest fixated to the supports; the rotational movement checking device, that obstructs the pin to rotate, and at the same time, permits it to be displaced in the radial direction, is provided inside the chest; the scale is provided on the outer circumferential surface of the inner cylindrical body; and, the rudder angle detecting optical sensors facing the scale are mounted on the inner circumferential surface of the outer cylindrical body.