Abstract:
The total porosity of a subterranean formation is calculated by summing the effective Porosity and the clay bound water (CBW) porosity. With the invention described in this patent, the distortion effects of clay bound water (CBW) porosity on the measurement of total porosity is filtered out. The effects will be more significant in slialy sand where the CBW porosity component of total porosity is abundant. The correct NMR transverse relaxation time (T.sub.2) spectra distribution is essential to a determination of capillary bound fluid (BVI) partial porosity and the Spectral Bulk Volume Irreducible (SBVI) model. The same data correction concept can be applied to make a meaningful comparison of well logs or laboratory core NMR data that are obtained with different interecho time (TE) sampling periods.
Abstract:
An apparatus for determining radial distribution of resistivity of earth formations surrounding a wellbore. The apparatus includes a sonde mandrel having an insulating exterior surface and electrodes disposed on the insulating surface at spaced apart locations. The electrodes are connected to circuits for measuring a focused current resistivity within a predetermined longitudinal span. The electrodes are also connected to circuits for measuring electrical impedance between pairs of electrodes spaced apart at a plurality of different longitudinal spacings. The preferred embodiment includes a voltage measuring circuit interconnected between a pair of electrodes which is positioned between a closest spaced pair of electrodes connected to the impedance measuring circuits, so that a vertical resolution of the impedance measurements can be limited to approximately the axial spacing of the pair of electrodes connected to the voltage measuring circuit. A method according to the invention for determining the distribution of resistivity of earth formations surrounding a wellbore includes the steps of measuring a focused current resistivity of the earth formations to determine a composite resistivity of an uninvaded zone, an invaded zone and a flushed zone. Impedance is measured between pairs of electrodes, each pair having a different longitudinal spacing, and resistivity of the flushed zone and the invaded zone are determined from the measurements of impedance. The resistivity of the uninvaded zone can then be determined from the measurement of focused current resistivity.
Abstract:
A differential array instrument for determining selected parameters of an earth formation surrounding a borehole, including an instrument mandrel carrying a single source electrode for injecting an electrical current of a predetermined value into the formation surrounding the borehole, and an array of a plurality of measurement electrodes uniformly and vertically spaced from said source electrode along the instrument mandrel. A predetermined group of the uniformly and vertically spaced electrodes are adapted to derive first and second difference potentials between the predetermined group of electrodes, wherein successive ones of a plurality of the predetermined group of selected measuring electrodes uniformly and vertically spaced at increasing distances from the source electrode axially of the borehole are adapted to derive a plurality of the first and second difference potentials between the predetermined group of electrodes. The first and second difference potentials are derived in response to current from the source electrode travelling generally vertically in an orientation generally parallel to the axis of the borehole in the formation to successive ones of the predetermined groups of selected measuring electrodes and which plurality of first and second difference potentials may be correlated to a plurality of values representative of the selected formation parameters. The plurality of values representative of the selected formation parameters may provide a profile of the selected parameters over an increasing radial distance from the borehole.
Abstract:
An apparatus supported by a vessel for removing a seismic cable and attached buoy from water. A clamp for gripping the cable and attached buoy is connected to a boom. The boom manuevers the clamp into engagement with the floating buoy, lifts the buoy from the water, and moves the buoy horizontally relative to the vessel. A cable puller can cooperate with the boom to reel the cable from the water without requiring manual intervention. The boom can comprise an extensible, telescoping structure or an articulated structure. Multiple cable ends can be independently captured to permit cable installation or repair, and the operations can be facilitated with a control panel for operating the moving components.
Abstract:
A method for inverting a seismic signal, wherein an input seismic signal is represented as an input vector i(t) of length m+n-1, an output seismic signal is represented as an output vector o(t) of length m, and a finite impulse response filter is represented as a solution vector u(t) of length n, satisfying a convolutional equation i(t)Xu(t)=o(t). An m.times.n Toeplitz matrix T(t,.tau.) corresponding to i(t) is calculated, satisfying a matrix equation T(t,.tau.).multidot.u(t)=o(t). Both sides of the matrix equation are transformed to the frequency domain, to generate a transformed equation. Both sides of the transformed equation are spectrally pruned, to generate a pruned equation. The pruned equation is then solved.
Abstract translation:一种用于反演地震信号的方法,其中输入地震信号被表示为长度为m + n-1的输入向量i(t),输出地震信号被表示为长度为m的输出向量o(t),以及 有限脉冲响应滤波器被表示为长度为n的解矢量u(t),满足卷积方程i(t)+ E,crc X + EE u(t)= o(t)。 计算对应于i(t)的m×n Toeplitz矩阵T(t,τ),满足矩阵方程T(t,τ)xu(t)= o(t)。 将矩阵方程的两边变换为频域,生成变换方程。 变换方程的两边被光谱修剪,以产生修剪方程。 然后解决修剪方程。
Abstract:
An instrument for measuring resistivity of earth formations within azimuthal segments. The instrument includes azimuthally separated measure electrodes placed in contact with the wall of a wellbore penetrating the earth formations. The electrodes are placed in contact with the wall by springs, hydraulics or similar mechanisms. A guard electrode surrounds each measure electrode. The instrument includes a booster current electrode axially spaced apart from the guard electrodes. An insulator axially separates the guard electrodes from the booster electrode. Monitor electrodes are disposed on the exterior of the insulator. A first bucking current circuit is connected to the guard electrodes. The first bucking current constrains the flow of measuring currents from each measure electrode to a path substantially perpendicular to the axis of the instrument. A booster current circuit is connected to the booster electrode. The booster current circuit is controllably operated to maintain substantially zero voltage drop across the monitor electrodes. The instrument includes first measuring current sources each connected to one of the measure electrodes, and circuits for measuring voltage and current emitted through each of the measure electrodes. The resistivity of the segment in contact with each measure electrode can be determined from the voltage and current. In a preferred embodiment, the lengths of the booster electrode, insulator and guard electrodes are selected to enable determination of resistivity without having symmetric flow of bucking currents about the axis of the instrument with respect to the measure electrodes.
Abstract:
Seismic survey data is stored in encrypted format in a first memory. The first memory module is transferred to a first computer in a first location. A portion of the seismic survey data is selected using a second computer in the first location, wherein the second computer communicates with a second location. A request authorization is transmitted from the second computer to the second location. A decryption code is transmitted from the second location to the second computer. The decryption code is transferred from the second computer to the first computer. The decryption code is applied to the selected portion of seismic survey data in the first computer, making available seismic survey data in decrypted format.
Abstract:
An apparatus and method for retaining a seismic cable connector module to permit in-water repair of seismic cables. A clamp is supported by a vessel positioned over the submerged seismic cable. The seismic cable is raised above the water surface, and the clamp is attached to the exterior surface of the connector module. The clamp can include a lock for securing the connector module, and a swivel between the clamp and the vessel can permit movement of the connector module relative to the vessel as the vessel heaves due to wind and wave action. The clamp can release the connector module if the environmental forces acting on the connector module exceed a selected amount. The clamp can be attached to a separate vessel for in-water use or can be attached to the vessel deck. A clasp within the exterior surface of the connector module is detachably engagable with a clamp supported by the vessel.
Abstract:
A method for determining the fractional amounts of, and the thermal neutron capture cross-sections of, individual components which are included in the decay spectrum measured by a pulsed neutron well logging instrument. The instrument includes a pulsed high energy neutron source, and one or more gamma ray detectors spaced apart from the source. The method includes generating a data kernel which is made up of representors of decay components of the wellbore and of the earth formations in the vicinity of the instrument. The decay spectrum measured by the instrument is inverted to determine parameters by which the representors are scaled so that in combination the scaled representors most closely match the measured decay spectrum. The parameters represent the fractional amounts of each exponential decay component which makes up the measured exponential decay spectrum.
Abstract:
A method for generating an unaliased 3-D DMO operator using two dimensional sampling theory to the spatial traverse of the operator as well as to the temporal axis. First a continuous DMO operator is generated along the line segment connecting a source and a receiver directed at an arbitrary azimuth relative to a biaxial output grid. The operator is discretized at spaced-apart sample points along the DMO aperture segment, the spacing being equal to or less than the output grid dimensions. A exponentially tapered sinc filter function is applied to the samples which are then interpolated onto the output grid.