摘要:
In order to assure smooth and essentially equidistant running of correspondingly loaded pair of skis over ground when turning left or right without any sideslip, a ski is bent at its tip at a pre-determined angle around its longitudinal axis and deflected from the ground by a radius along a that longitudinal axis. Despite a practically symmetric appearance of the circumference of such ski when observed in top view, the distance between a front inflection point and a rear inflection point on the left ski edge and the distance between the front inflection point and the rear inflection point on the right ski edge differ from each other such that the active lengths of the ski edges differ from each other. A weak area of the ski is provided adjacent at least one inflection point to provide different compression distributions between the ground and each of the ski edges.
摘要:
A gliding board having a front end and a rear end, the front end and the rear end being spaced from one another along a longitudinal axis, the board being made by superimposing the following elements: a gliding sole; at least one lower reinforcement; at least one upper reinforcement; an intermediate structure, positioned between at least one lower reinforcement and the at least one upper reinforcement; wherein, at least on of the ends of the gliding board, at least one lower reinforcement and/or the at least one upper reinforcement respectively include/each include a longitudinal slit so that in a zone of at least one of the ends there is a reduced reinforcement thickness above and/or below the intermediate structure.
摘要:
A ski having a central core, a lower reinforcement sub-assembly located beneath the core and resting on a gliding sole that is edged with two lateral running edges, and an upper reinforcement sub-assembly located above the core, and coated with a decoration layer, each of the reinforcement sub-assemblies having one or more layers, at least one of the upper reinforcement layers having a central portion, and at least one lateral portion. At least one of the reinforcement layers of the upper reinforcement sub-assembly has an asymmetrical structure in the area of its lateral portions, along at least a portion of its length. The invention also relates to a pair of skis, in which each of the skis is symmetrical to the other in mirror symmetry.
摘要:
A ski having a tip region, a heel region, and a central zone, is provided with a running sole having longitudinal sides and a longitudinal axis, an edge formed on each of the sides of the running sole, and an upper face including at least two side faces being non-parallel to the running sole. The at least two side faces intersect each other above the running sole to create an apex extending longitudinally over at least part of the ski. The apex is asymmetrical with respect to a longitudinal mid-plane through the longitudinal axis of the running sole.
摘要:
An Alpine pair ski (1) comprises a flat first sliding surface (2) and lateral surfaces (6a, b) provided with an approximately continuous concave sidecut between a first transition line A-A' defining the transition from a main section to a front section (3) and a second transition line E-E' defining the transition from the main section to a rear section (5), the course of a lower lateral edge (7a, b) between the transition lines A-A' and E-E' approximating a continuous curve. The sole on both sides of first sliding surface (2) comprises additional sliding surfaces (4) which extend upwards from the edge of the first sliding surface (2) to the lower lateral edges (7a, b) of the ski with an uplift (H.sub.s) whose value at a point on the lower lateral edge (7a, b) of the ski is given by the length of the perpendicular from this point to plane of the sole. The additional sliding surfaces (4) extend in the longitudinal direction of the ski at least from the first and second transition lines A-A' and E-E' respectively towards a transversal line C-C' behind the middle of the ski and in that section of the ski where the binding is attached, the width of the ski at the line C-C' being equal to the smallest width of the ski between line A-A' and E-E'. The uplift (H.sub.s) is in lower lateral edge (7a, b) on the additional sliding surfaces (4) substantially increases with the ski's increasing width in the direction of the lines A-A' and E-E' respectively.
摘要:
A double-edged snowboard (10) is disclosed. The snowboard includes a middle portion with a core, a tail (14) at the rear end of the middle portion, a shovel (12) at the front end of the middle portion, and a base (18) along the bottom of the middle, tail, and shovel portions of the snowboard. The base includes a central running surface (24), two outer running surfaces (26 and 28), first and second outer edges (34 and 36), and first and second inner edges (30 and 32). The central running surface is lower than the outer running surfaces. The first and second outer edges surround a portion of the perimeter of the first and second outer running surfaces, respectively. The first and second inner edges are disposed between the central running surface and the first and second outer running surfaces, respectively. The outer edges are generally symmetric about the longitudinal axis of the snowboard, whereas the inner edges may be positioned in a number of ways, depending on the desired performance characteristics of the snowboard. Asymmetric arrangements of the inner edges are disclosed that help accommodate for a skewed foot position on the snowboard. The disclosure also includes a method for manufacturing a dual-edged snowboard consistent with the above description.
摘要:
A gliding board may have less resistance to bending in portions within one or both binding mounting regions as compared to portions at or near ends of the binding mounting regions. Some embodiments provide for increased ability to store and release energy when performing certain maneuvers with the board, such as nose presses, ollies and similar moves. Regions of greatest stiffness may be arranged at outer ends of the binding mounting regions, and may be arranged along lines that are transverse to a longitudinal axis of the board. Alternately, a board may include heel and toe convex portions in the heel and toe side edges that are offset along the board length, e.g., so that the heel convex portions are closer to each other and to a longitudinal board center than the toe convex portions.
摘要:
A gliding board may have less resistance to bending in portions within one or both binding mounting regions as compared to portions at or near ends of the binding mounting regions. Some embodiments provide for increased ability to store and release energy when performing certain maneuvers with the board, such as nose presses, ollies and similar moves. Regions of greatest stiffness may be arranged at outer ends of the binding mounting regions, and may be arranged along lines that are transverse to a longitudinal axis of the board. Alternately, a board may include heel and toe convex portions in the heel and toe side edges that are offset along the board length, e.g., so that the heel convex portions are closer to each other and to a longitudinal board center than the toe convex portions.
摘要:
A pair of gliding boards adapted to be used together by a user, with no connection to one another, for gliding in a gliding direction, the pair of boards including a first board which has an elongated shape extending along a first longitudinal axis and a first arrangement to fasten the user's left foot to the first board along a first fastening axis, the pair of boards also including a second board which has an elongated shape extending along a second longitudinal axis and a second arrangement to fasten the user's right foot to the second board along a second fastening axis. The first fastening axis forms a first angle β1 with the first longitudinal axis, the second fastening axis forms a second angle β2 with the second longitudinal axis, the angle β1 and angle β2 being oriented in the same direction, and at least one of the angles β1 and β2 being non-zero.
摘要:
Snow skis having asymmetrical edges to make turning easier while telemark or alpine skiing. Each ski has concave, curved lateral edges. These lateral edges are asymmetrical, in that the medial edge of each ski is substantially longer than its outer edge. In addition, the point of maximum side cut on the outer edge is adjacent to the toe area of the skiers boot, while the point of maximum side cut on the medial edge is adjacent to the middle of the ski boot to facilitate easier turns while telemark skiing.