摘要:
The present invention is a bi-propellant system comprising a gelled liquid propane (GLP) fuel and a gelled MON-30 (70% N2O4+30% NO) oxidizer. The bi-propellant system is particularly well-suited for outer planet missions greater than 3 AU from the sun and also functions in earth and near earth environments. Additives such as powders of boron, carbon, lithium, and/or aluminum can be added to the fuel component to improve performance or enhance hypergolicity. The gelling agent can be silicon dioxide, clay, carbon, or organic or inorganic polymers. The bi-propellant system may be, but need not be, hypergolic.
摘要:
The present invention is a method and apparatus for gelling liquid propane and other liquefied gasses. The apparatus includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The method uses gelling agents such as silicon dioxide, clay, carbon, or organic or inorganic polymers, as well as dopants such as titanium, aluminum, and boron powders. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.
摘要:
Slush is made from a liquid using slush making systems or according to slush making processes. A jacketed vessel of the processes and the systems has an interior wall that defines an interior space. The interior space comprises a top and a bottom. The interior space has an average overall cross-sectional area taken through a vertical axis extending generally between the top and the bottom. The interior space also has a collection portion having an average collection portion cross-sectional area taken through the vertical axis that is less than the average overall cross-sectional area. The liquid is placed into the interior space and the interior walls are cooled. Slush forms on the interior walls and migrates to the collection portion. The collection portion is located at the interior space bottom when the slush density is higher than the liquid density and the collection portion is located at the interior space top when slush density is less than the liquid density. To facilitate the migration of the slush to the collection portion, at least a conical portion of the interior space has the general shape of a cone and the collection portion is located in the proximity of an apex of the conical portion, thereby helping to funnel the slush to the collection portion. The cryogenic liquid to be made into slush may be oxygen, nitrogen, hydrogen, helium, or water. The slush may be used to densify cryogenic liquids, such as cryogenic liquid propellants.
摘要:
A method for preparing a gelled liquid propane (GLP) composition comprises the introduction of liquid propane into an evacuated mixing vessel containing a gellant and mixing the liquid propane with the gellant. A bi-propellant system comprising GLP is particularly well-suited for outer planet missions greater than 3 AU from the sun and also functions in earth and near earth environments. Additives such as powders of boron, carbon, lithium, and/or aluminum can be added improve performance or enhance hypergolicity. The gelling agent can be silicon dioxide, clay, carbon, or organic or inorganic polymers. The bi-propellant system may be, but need not be, hypergolic.
摘要:
A method and apparatus for gelling liquid propane and other liquefied gasses includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.
摘要:
The present invention is a method and apparatus for gelling liquid propane and other liquefied gasses. The apparatus includes a temperature controlled churn mixer, vacuum pump, liquefied gas transfer tank, and means for measuring amount of material entering the mixer. The method uses gelling agents such as silicon dioxide, clay, carbon, or organic or inorganic polymers, as well as dopants such as titanium, aluminum, and boron powders. The apparatus and method are particularly useful for the production of high quality rocket fuels and propellants.