Abstract:
A dual function gearbox generates two separate output rotational motions from a single input rotational motion. First and second rotatable housings comprise corresponding first and second internal gears, with the internal gears having different pitch diameters. A drive shaft is disposed within the housings, extending though openings within opposite sides of housings, with an eccentric rotor disposed around the drive shaft. The eccentric rotor is in operative contact with a differential gear ring comprising first and second external gear rings having different diameters, with the first and second external gear rings engaging corresponding first and second internal gears. When rotational energy is imparted to one end of the drive shaft, the gearing arrangement imparts a rotational motion to either the first or second rotatable housing, with the housing rotating around the other end of the rotating drive shaft, which can extend outside of the dual function gearbox. Thus, the dual function gearbox generates two output motions: high torque rotation of the rotatable housing; and rotation of the drive shaft which can be used as an input rotation to additional dual function gearboxes.
Abstract:
A number of variations may include a gear drive comprising: a housing; a first ring gear; a shaft supported in the housing, wherein the shaft has a central axis of rotation; a second ring gear, wherein the second ring gear is coaxial with the shaft and operably connected and rotatable with the shaft; at least one intermediate gear, wherein the at least one intermediate gear includes a first end and a second end, wherein the first end is operably engaged with the first ring gear and the second end is operably engaged with the second ring gear; and a bias spring, wherein the bias spring comprises a first end, a second end, and a plurality of coils, and wherein the first end is stationary in the housing.
Abstract:
A torsional vibration damping arrangement has an input-side connection component, an output-side connection component, a first torque transmission path arranged between the input-side connection component and the output-side connection component, a second torque transmission path arranged parallel to the first torque transmission path between the input-side connection component and the output-side connection component ( ), a phase shifter arrangement and a torque adjusting arrangement ( ). The phase shifter arrangement is arranged in the first torque transmission path or second torque transmission path and is configured to generate a phase shift of rotational irregularities guided via the first torque transmission path relative to rotational irregularities guided via the second torque transmission path. The torque adjusting arrangement is configured to change a torque transmission ratio between a first torque component which is transmitted via the first torque transmission path and a second torque component which is transmitted via the second torque transmission path.
Abstract:
A reduction gear assembly integrates a stationary section having a stationary internal gear configuration, an output section having an output internal gear configuration, an input shaft and planetary carrier comprising an input shaft having a shaft rotational axis and a planetary gear cam having a planetary gear rotational axis, wherein the shaft axis and cam axis are offset. A planetary gear comprising a planet wheel first stage and a planet wheel second stage is rotationally assembled to the planetary gear cam. The first stage planet wheel engages with the stationary gear. The second stage planet wheel engages with the output gear. Rotation of the input shaft rotates the planetary gear about a circular path. Engagement between the first stage and the stationary gear rotates the planetary gear. Second stage teeth engage with the output gear. Difference in first stage and second stage teeth counts causes rotation of the output section.
Abstract:
A method of rotating an output gear at a rotational rate that is slower than an input rotational rate. The input rotation moves a planetary gear in a circular motion about a central axis. A first stage external gear configuration of the planetary gear engages with an internal gear configuration of a stationary gear. The engagement rotates the planetary gear about a concentrically located planetary gear rotational axis. A second stage external gear configuration is rotated by and at a same rate the first stage external gear configuration. The first stage diameter and/or number of teeth differs from the second stage diameter and/or number of teeth. The planetary gear rotation in conjunction with the difference between the first and second stages causes the output gear to rotate respective to the stationary gear. Rotational positioning of the output gear can be monitoring and adjusted by controlling the input rotational rate.
Abstract:
A speed change gear includes: an internal gear member; an eccentric member; an oscillating member; a pair of first and second rotating members; and a pin that is supported at both ends by insertion holes of the first and second rotating members. The insertion hole and the insertion hole have the same diameter. The outside diameter of the other side end portion of the pin is smaller than the outside diameter of one side end portion of the pin such that the one side end portion is press-fitted in the corresponding insertion hole and the other side end portion is supported by the corresponding insertion hole.
Abstract:
A speed changing apparatus for changing an input speed to an output either greatly slower or faster, the apparatus has a coaxial pair of ring gears that includes a large ring gear having a pitch diameter A and a small ring gear having a pitch diameter D. A coaxial pair of spur gears includes a large spur gear having a pitch diameter B and a small spur gear having a pitch diameter C. The large spur gear meshes with the large ring gear and the small spur gear meshes with the small ring. A carrier member is connected to one of the input and output shafts of the apparatus. Two gears of one of the two coaxial pairs being fixed together to operate epicyclically on the carrier. One gear of the other of the two coaxial pairs being fixed to the frame of the apparatus and the other gear being connected to the other of the input and output shafts. In the apparatus, the four gears satisfy the dimensional relationship of A=K+i, B=K, C=K−j and D=K+i−j.
Abstract translation:一种变速装置,用于将输入速度改变为输出速度变得更慢或更快,该装置具有同轴对的齿圈,其包括具有节距直径A的大齿圈和具有节距直径D的小齿圈。 同轴对正齿轮包括具有节距直径B的大正齿轮和具有节距直径C的小正齿轮。大正齿轮与大环形齿轮啮合,小正齿轮与小环啮合。 承载构件连接到装置的输入和输出轴之一。 两个同轴对中的一个的两个齿轮被固定在一起以在行星轮上行星运动。 两个同轴对中的另一个的一个齿轮被固定到设备的框架,而另一个齿轮连接到另一个输入和输出轴。 在该装置中,四个齿轮满足A = K + i,B = K,C = K-j和D = K + i-j的尺寸关系。
Abstract:
The present invention relates to automatic transmissions. In particular, the instant invention relates to an automatic transmission with improved resistance to deterioration with an increased effective life. The transmission of the instant invention comprises eight pinion gears assembled into one carrier utilizing a forward and a rear sun gear, a ring gear, a band drum and a one way roller clutch.
Abstract:
Object: To provide a planetary gear mechanism with a free-wheel mechanism that can prevent seizing of a thrust plate and can increase the degree of freedom in setting of a gear ratio. Means to Solve the Problem: A planetary gear mechanism 100 is a planetary gear mechanism with a free-wheel mechanism for reducing the output of a hydraulic motor 104 and transmitting the reduced output. The planetary gear mechanism 100 includes: a housing 108 configured to be decelerated and rotated; a cover 128 that seals an end surface 126 of the housing; a sun shaft 132 configured to be splined to a motor shaft 106 of the hydraulic motor; a first sun gear 142 formed in one piece with the sun shaft; a first planetary gear 144 meshed with the first sun gear; a carrier 146 that supports a shaft 148 of the first planetary gear; a thrust plate 160 that is disposed toward the cover relative to the first planetary gear, and is configured to restrict a movement of the carrier; a hole 164 that is formed in the thrust plate and through which the first sun gear can be passed; a maintenance hole 166 that is formed in the cover and through which the first sun gear can be passed; and a plug 162 configured to close the maintenance hole.