摘要:
A process for the separation of a low-boiling gaseous mixture by low-temperature rectification, comprising the steps of:(a) subjecting said gaseous mixture to rectification in a high pressure zone to obtain a crude light fraction and a crude heavy fraction;(b) passing said crude light fraction and said crude heavy fraction to an intermediate pressure rectification zone to obtain an enriched gaseous overhead and an enriched liquid bottoms;(c) passing said liquid bottoms into a low-pressure rectification zone; and(d) withdrawing vapor from said low pressure rectification zone by suction, increasing the pressure of said vapor and passing said vapor into the intermediate pressure rectification zone;Whereby the pressure in the high pressure stage is lower than the pressure in a high pressure stage of a double column employing two pressure stages.
摘要:
The present invention relates to an air liquefaction separation apparatus whose power cost is reduced. A low-pressure column of a double rectification column has a cleaning section at a lower position, and a liquid oxygen is partly withdrawn from the space above the cleaning section so as to supply it to a main condenser-evaporator. The liquid oxygen supplied to the main condenser-evaporator is subjected to heat exchange with a nitrogen gas separated at the head of a high-pressure column to be gasified into an oxygen gas. This oxygen gas is introduced to the space under the cleaning section. Hydrocarbons contained in the oxygen gas ascending through the cleaning section are removed by the rest of the liquid oxygen descending through the cleaning section to provide a clean oxygen gas. The liquid oxygen passed through the cleaning section is withdrawn from the low-pressure column. Thus, since the hydrocarbons are prevented from being concentrated highly to or over critical levels in the liquid oxygen in the main condenser-evaporator, submergence in the main condenser-evaporator can be reduced to minimize the influence of the depth of the liquid, thus improving heat exchange efficiency to lower the pressure of the nitrogen gas, as well as, to reduce operating cost by reducing power of the compressor for compressing the feed air.
摘要:
The invention relates to a method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air in a distillation column system for nitrogen-oxygen separation, said distillation column system having at least one high-pressure column (8) and one low-pressure column (460), wherein the low-pressure column (460) is in a heat-exchanging connection with the high-pressure column (8) by means of a main condenser (461) designed as a condenser-evaporator. Feed air is compressed in an air compressor (2). The compressed feed air (6, 734, 802, 840) is cooled down in a main heat exchanger (20) and at least partially introduced into the high-pressure column (8). An oxygen-enriched liquid (462, 465) is removed from the high-pressure column (8) and fed to the low-pressure column (460) at a first intermediate position (464, 467, 906). A nitrogen-enriched liquid (468, 470) is removed from the high-pressure column (8) and/or the main condenser (461) and fed to the head of the low-pressure column (460). A liquid oxygen flow (11, 12) is removed from the distillation column system for nitrogen-oxygen separation, brought to an elevated pressure in the liquid state (13), introduced into the main heat exchanger (20) at said elevated pressure, evaporated or pseudo-evaporated and heated to approximately ambient temperature in the main heat exchanger (20), and finally obtained as a gaseous compressed oxygen product (14). A high-pressure process flow (34, 734) is brought into indirect heat exchange with the oxygen flow in the main heat exchanger (20) and then depressurized (36, 38; 736, 738), wherein the depressurized high-pressure flow (37, 737) is introduced at least partially in the liquid state into the distillation column system for nitrogen-oxygen separation. A gaseous circuit nitrogen flow (18, 19) is drawn from the high-pressure column and at least partially (21) compressed in a circuit compressor (22). A first sub-flow (45, 46; 244, 242, 230; 845, 846) of the circuit nitrogen flow is removed from the circuit compressor (22, 322), cooled down in the main heat exchanger (20), at least partially condensed in the bottom evaporator (9, 209) of the high-pressure column (8) in indirect heat exchange with the bottom liquid of the high-pressure column (8), and conducted back into the distillation column system for nitrogen-oxygen separation. A second sub-flow of the circuit nitrogen flow is branched off upstream and/or downstream of the circuit compressor and/or from an intermediate stage of the circuit compressor at a product pressure (P, P1, P2, P3, P4) and obtained as a compressed nitrogen product (27, 29, 53, 564, 565). The circuit compressor (22, 322) is designed as a hot compressor and is driven by means of external energy.
摘要:
The invention relates to a method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air in a distillation column system for nitrogen-oxygen separation, said distillation column system having at least one high-pressure column (8) and one low-pressure column (460), wherein the low-pressure column (460) is in a heat-exchanging connection with the high-pressure column (8) by means of a main condenser (461) designed as a condenser-evaporator. Feed air is compressed in an air compressor (2). The compressed feed air (6, 734, 802, 840) is cooled down in a main heat exchanger (20) and at least partially introduced into the high-pressure column (8). An oxygen-enriched liquid (462, 465) is removed from the high-pressure column (8) and fed to the low-pressure column (460) at a first intermediate position (464, 467, 906). A nitrogen-enriched liquid (468, 470) is removed from the high-pressure column (8) and/or the main condenser (461) and fed to the head of the low-pressure column (460). A liquid oxygen flow (11, 12) is removed from the distillation column system for nitrogen-oxygen separation, brought to an elevated pressure in the liquid state (13), introduced into the main heat exchanger (20) at said elevated pressure, evaporated or pseudo-evaporated and heated to approximately ambient temperature in the main heat exchanger (20), and finally obtained as a gaseous compressed oxygen product (14). A high-pressure process flow (34, 734) is brought into indirect heat exchange with the oxygen flow in the main heat exchanger (20) and then depressurized (36, 38; 736, 738), wherein the depressurized high-pressure flow (37, 737) is introduced at least partially in the liquid state into the distillation column system for nitrogen-oxygen separation. A gaseous circuit nitrogen flow (18, 19) is drawn from the high-pressure column and at least partially (21) compressed in a circuit compressor (22). A first sub-flow (45, 46; 244, 242, 230; 845, 846) of the circuit nitrogen flow is removed from the circuit compressor (22, 322), cooled down in the main heat exchanger (20), at least partially condensed in the bottom evaporator (9, 209) of the high-pressure column (8) in indirect heat exchange with the bottom liquid of the high-pressure column (8), and conducted back into the distillation column system for nitrogen-oxygen separation. A second sub-flow of the circuit nitrogen flow is branched off upstream and/or downstream of the circuit compressor and/or from an intermediate stage of the circuit compressor at a product pressure (P, P1, P2, P3, P4) and obtained as a compressed nitrogen product (27, 29, 53, 564, 565). The circuit compressor (22, 322) is designed as a hot compressor and is driven by means of external energy.
摘要:
The invention concerns a distillation column (1) comprising means (21) for conveying at least one mixture to be distilled to the column, means (23) for drawing at least one fluid enriched in one constituent of the mixture from the column, inside the column, an evaporator-condenser (3) and means (25) for conveying a gas to be condensed and a liquid to be evaporated to the evaporator-condenser as well as means for removing the condensed gas and the evaporated liquid, at least one module of packing materials (5) located above the evaporator-condenser and at least one firebreak barrier (7A, 7B, 7C) between the evaporator-condenser and the module of packing materials.
摘要:
A cryogenic air separation system for producing very high purity oxygen employing a lower pressure column having a volume in its lower portion set off by a diaphragm, and an upgrader column communicating with the lower pressure column in a defined manner relative to the diaphragm.