摘要:
The invention relates to a data processing method of determining a change of an image of an anatomical body part of a patient's body, the method being executed by a computer and comprising the following steps: a) acquiring static medical image data comprising static medical image information describing anatomical body part in a first anatomical spatial state of an anatomical vital spatial change of the anatomical body part; b) acquiring patient model data comprising patient model information describing a model body part corresponding to the anatomical body part, wherein the patient model information describes the model body part in a plurality of model spatial states of a model vital spatial change corresponding to the anatomical vital spatial change; c) determining spatial state mapping data comprising spatial state mapping information describing at least one of a first mapping from the model body part in a first one of the plurality of model spatial states to the model body part in a second, different one of the plurality of model spatial states, the first model spatial state corresponding to the first anatomical spatial state, and a second mapping from the model body part in the first model spatial state to the anatomical body part in the first anatomical spatial state; d) determining, based on the static medical image data and the spatial state mapping data, transformed medical image data comprising transformed medical image information describing the anatomical body part in a second anatomical spatial state of the anatomical vital spatial change, the second anatomical spatial state corresponding to the second model spatial state.
摘要:
The invention relates to a data processing method of determining a change of an image of an anatomical body part of a patient's body, the method being executed by a computer and comprising the following steps: a) acquiring static medical image data comprising static medical image information describing anatomical body part in a first anatomical spatial state of an anatomical vital spatial change of the anatomical body part; b) acquiring patient model data comprising patient model information describing a model body part corresponding to the anatomical body part, wherein the patient model information describes the model body part in a plurality of model spatial states of a model vital spatial change corresponding to the anatomical vital spatial change; c) determining spatial state mapping data comprising spatial state mapping information describing at least one of a first mapping from the model body part in a first one of the plurality of model spatial states to the model body part in a second, different one of the plurality of model spatial states, the first model spatial state corresponding to the first anatomical spatial state, and a second mapping from the model body part in the first model spatial state to the anatomical body part in the first anatomical spatial state; d) determining, based on the static medical image data and the spatial state mapping data, transformed medical image data comprising transformed medical image information describing the anatomical body part in a second anatomical spatial state of the anatomical vital spatial change, the second anatomical spatial state corresponding to the second model spatial state.
摘要:
In a computerized method, a moving object is detected in a sequence of frames of a video of a scene. Each of the frames includes a plurality of pixels representing measured light intensity values at specific locations in the scene. The pixels are organized in a regularized pattern in a memory. The object is modeled as a branched kinematic chain composed of links connected at joints. The frames are iteratively segmented by assigning groups of pixels having like pixel motion to individual links, while estimating motion parameters for the groups of pixels assigned to the individual links until the segmented pixels and their motion parameters converge and can be identified with the moving object as modeled by the kinematic chain.
摘要:
A method and apparatus for generating three-dimensional, textured computer models from a series of video images of an object is disclosed. The invention operates by tracking a selected group of object features through a series of image frames and, based on changes in their relative positions, estimates parameters specifying camera focal length, translation and rotation, and the positions of the tracked features in the camera reference frame. After segmentation of the images into two-dimensional bounded regions that each correspond to a discrete surface component of the actual object, the texture contained in the various video frames is applied to these regions to produce a final three-dimensional model that is both geometrically and photometrically specified.
摘要:
Video analysis methods are described in which abnormalities are detected by comparing features extracted from a video sequence or motion patterns determined from the video sequence with a statistical model. The statistical model may be updated during the video analysis.
摘要:
Embodiments related to detecting object information from image data collected by an image sensor are disclosed. In one example embodiment, the object information is detected by receiving a frame of image data from the image sensor and detecting a change in a threshold condition related to an object within the frame. The embodiment further comprises adjusting a setting that changes a power consumption of the image sensor in response to detecting the threshold condition.
摘要:
A method of tracking a target includes receiving an observed depth image of the target from a source and obtaining a posed model of the target. The model is rasterized into a synthesized depth image, and the pose of the model is adjusted based, at least in part, on differences between the observed depth image and the synthesized depth image.
摘要:
Various embodiments are disclosed for performing object tracking. One embodiment is a system for tracking an object in a plurality of frames, comprising a probability map generator configured to generate a probability map by estimating probability values of pixels in the frame, wherein the probability of each pixel corresponds to a likelihood of the pixel being located within the object. The system further comprises a contour model generator configured to identify a contour model of the object based on a temporal prediction method, a contour weighting map generator configured to derive a contour weighting map based on thickness characteristics of the contour model, a tracking refinement module configured to refine the probability map according to weight values specified in the contour weighting map, and an object tracker configured to track a location of the object within the plurality of frames based on the refined probability map.
摘要:
A system tracks human head and facial features over time by analyzing a sequence of images. The system provides descriptions of motion of both head and facial features between two image frames. These descriptions of motion are further analyzed by the system to recognize facial movement and expression. The system analyzes motion between two images using parameterized models of image motion. Initially, a first image in a sequence of images is segmented into a face region and a plurality of facial feature regions. A planar model is used to recover motion parameters that estimate motion between the segmented face region in the first image and a second image in the sequence of images. The second image is warped or shifted back towards the first image using the estimated motion parameters of the planar model, in order to model the facial features relative to the first image. An affine model and an affine model with curvature are used to recover motion parameters that estimate the image motion between the segmented facial feature regions and the warped second image. The recovered motion parameters of the facial feature regions represent the relative motions of the facial features between the first image and the warped image. The face region in the second image is tracked using the recovered motion parameters of the face region. The facial feature regions in the second image are tracked using both the recovered motion parameters for the face region and the motion parameters for the facial feature regions. The parameters describing the motion of the face and facial features are filtered to derive mid-level predicates that define facial gestures occurring between the two images. These mid-level predicates are evaluated over time to determine facial expression and gestures occurring in the image sequence.
摘要:
Methods and systems for generating a size measurement of a body part of person for fitting a garment include providing photographic data that includes images of the body part and using feature extraction techniques to create a computer model of the body part.