Abstract:
Within a method of making an optical interference filter, sample spectra and measurements of a predetermined characteristic associated with respective spectra are provided. Upon selection of an initial number of filter layers and a thickness for each layer, a transmission spectrum is determined. Each sample spectrum is applied to a regression formula that relates interaction of light with the transmission spectrum to a regression value. A comparison relationship between the calculated regression values and the sample measurements is defined and optimized, wherein thickness of each layer is an optimization variable.
Abstract:
Disclosed are methods for producing optical filters on a substrate. In particular, methods for producing microengineered optical filters for the ultraviolet/visible/infrared portions of the electromagnetic spectrum are disclosed, as well as a computer-based system and method for precisely matching predefined target transmission spectra using various coating materials whose spectra can be combined and weighted for the matching. In addition, methods for producing printed optical filters comprising multiple coating components to produce composite optical filters whose transmission spectra match predefined target filter spectrum specifications are disclosed, where the thickness and fill factor of each component coating is tailored, based on the weighting of each component coating transmission spectrum.