Abstract:
The present invention discloses a vehicle steering system having a rack bar supporting apparatus which prevents the rotation of a rack bar and makes the rack bar supporting apparatus compact by providing a plurality of rack bar supporting apparatuses installed at the rear of the rack bar to support the rack bar in the direction of a pinion gear. The vehicle steering system comprises a pinion shaft having a pinion gear on the outer circumference and being installed within a housing; a rack bar being located within the housing so that it can cross the pinion shaft and having a rack gear meshing with the pinion gear at one side of the middle part; and rack bar supporting apparatus provided on the rear surface of the rack bar for elastically supporting the rack bar in the direction of the pinion shaft, wherein a plurality of the rack bar supporting apparatuses are provided to vary the supporting direction and supporting force for supporting the rack bar.
Abstract:
A rack and pinion steering apparatus (10) comprises a housing (12). Helical teeth (60) of a pinion gear (54) meshingly engage teeth of a rack bar (42) and, during rotation of the pinion gear (54), result in an axial force. A shaft (86) connects with the pinion gear (54). Rotation of the shaft (86) effects rotation of the pinion gear (54). An assembly is interposed between the shaft (86) and the housing (12). The assembly comprises a first snap ring (142) that is attached to the shaft (86) and a second snap ring (144) that is attached to the housing (12). Interposed between the first and second snap rings (142 and 144) are only a fluid tight seal (146) for blocking fluid leakage from the housing (12) and a bushing (108) for enabling rotation of the shaft (86) relative to the housing (12) and for engaging the first snap ring (142) to block axial displacement of the pinion gear (54) due to the axial force acting on the pinion gear (54).
Abstract:
The invention relates to a steering system for motor vehicles, in which the steering spindle part, lying in the steering mechanism housing, is clamped axially in the same end region of the steering spindle part, in which the steering angle sensor unit for sensing the rotational angle or changes in the rotational angle is also provided.
Abstract:
In a rack and pinion type steering apparatus whose housing includes a pinion accommodating portion, a rack accommodating portion, a radial opening defining a rack guide hole, and a projecting portion which is formed on the side of the rack accommodating portion opposite the rack guide hole. The radial opening is covered by a plug that is fixed by swaging. The projecting portion has a contact surface being received on a jig when the plug is fixed to the housing by swaging. Therefore, the reaction of the swaging from the jig does not directly affect the pinion accommodating portion.
Abstract:
A steering gear frame includes upper and lower plates joined together at flange portions to define an inner space, a steering gearbox disposed to directly contact at least one of the upper and lower plates without using a bracket, and a fixing member for fixing the steering gearbox in a state where the steering gearbox is disposed to directly contact at least one of the upper and lower plates.
Abstract:
The toothed rack steering gear has an adjusting nut and a housing. An opening with internal thread of the housing is adapted to the adjusting nut and receives the adjusting nut in the assembled state. In the housing at least one recess is provided in direct proximity of the opening. A retainer is provided; it has a ring shaped body and at least one finger. The finger protrudes from this ring shaped body and can engage into the recess. The retainer has a back surface and the adjusting nut has a front surface. In the assembled state both are in contact. A connecting device is provided and secures the connection between the back surface and the front surface.
Abstract:
A rack and pinion steering gear (10) comprises a housing (12). A pinion gear (22) rotatably mounted in the housing (12). Teeth (28) of the pinion gear (22) engage teeth of a rack bar (30) that extends through the housing (12) and that is movable relative to the housing (12). A yoke assembly (38) is located in the housing (12) for at least partially supporting and guiding movement of the rack bar (30) relative to the pinion gear (22). The yoke assembly (38) comprises a first member (46) for contacting the rack bar (30) and a second member (48) for pivotally supporting the first member (46). Structure (70) of the second member (48) engages structure (58) of the first member (46) to enable the first member (46) to pivot in all directions about a point of rotation (P). The point of rotation (P) is spaced from a location of engagement of the first and second members (46 and 48).
Abstract:
A sealing boot for a rack and pinion steering system includes a tubular body structure of flexible seal material formed with a plurality of convolutes and terminating at each open end in a neck. An inner sealing surface of at lease one of the necks is formed with a plurality of annular, alternating grooves and ribs, which reduces the contact area of the sealing surface and provides annular pockets for retaining lubricant at the sealing surface to provide low frictional resistance to the rotation of the component about which the neck is sealed relative to the boot.
Abstract:
The object of the invention is to provide a rack shaft having two rack teeth groups and hollowed throughout the whole body, to lightweightize the shaft and to reduce the cost. The two rack teeth groups are located longitudinally apart from each other and have phase difference related to an angle around the axis of the shaft. After the two rack teeth groups are formed simultaneously or sequentially by die forming on the flat bottoms of the workpiece beforehand gutter-shaped, the legs of the gutter-shaped workpiece are bent to butt to each other and, thereby, a tubular body of the shaft is given to the workpiece. The centers of the material are offset beforehand corresponding to the phase difference.
Abstract:
A composite tubular housing for an automotive steering system, preferably an electronic power assist steering system, is formed of seamless metal tube section welded into an integral component. The housing includes a rack section and a pinion section having an opening that is welded to the rack section. A yoke section is formed of a tube having an end that is welded to the rack section opposite the pinion section. The pinion section may contain a drive pinion coupled to a steering wheel of the vehicle. The housing may also include sections for an assist pinion coupled to an electric motor, and a yoke which are attached to the rack section apart from the drive pinion.