Abstract:
An automatic focusing device for camera is provided which makes it possible to sequentially photograph a large number of frames while ensuring a high focusing accuracy. A first focusing unit carries out a first focusing operation. After the first focusing unit carries out the first focusing operation, a second focusing unit carries out a second focusing operation. A storage device stores a difference in results obtained by the first and second focusing operations. In sequential shooting, a controller causes the first focusing unit to correct the result of the first focusing operation according to the stored difference, and inhibits the second focusing unit from carrying out the second focusing operation.
Abstract:
This invention constitutes a measuring distance device including a sensor array which detects image signals of an object in a finder screen, a projection unit which projects a signal light on the object, a selection unit which selects a detection area for the image signal of the sensor array, a change unit (control unit) which makes detection areas selected by the selection unit different from each other when the signal light is projected or is not projected by the projection unit, and a focus adjustment unit which performs focus adjustment by an image signal output in the detection area of the sensor array selected by the selection unit. A reduction in time lag is achieved without increasing a read area, and an influence of harmful light is reduced. This device which can perform an accurate and high-speed process can be applied to a hybrid AF camera.
Abstract:
A phase difference detection apparatus for detecting a phase difference between images formed on a pair of optical sensor arrays in which the calculation of a compensation value is simplified. When a compensation effectiveness judgment unit judges that compensation of the pair of image data rows would be effective, a left and right difference compensation unit calculates a compensation amount based on a difference in maximum values and minimum values in a pair of image data rows corresponding to the images produced by the optical sensor arrays and compensates the image data rows by the calculated compensation amount. Based upon the compensated values, a correlation calculation unit carries out a correlation calculation, and a maximum correlation detection unit detects a maximum correlation level. Based upon the maximum correlation level, a interpolation calculation unit carries out an interpolation calculation, and a phase difference is detected by a phase difference detection unit.
Abstract:
An optical range finder has a projection unit for projecting optical flux to an object, a photoreceiving unit for receiving the optical flux returned from the object and outputting a detection signal in accordance with a light quantity of the received optical flux, and a circuitry unit for conducting a measurement of a distance to the object based on the detection signal. In the circuitry unit, a light quantity determination circuit compares a signal level of the detection signal with a reference level to carry out binary determination of the light quantity of the returned optical flux. A reference level setting circuit switchably supplies a plurality of reference levels to the light quantity determination circuit, the reference levels being preset in correspondence to multiple stages of the distance. A control circuit controls the reference level setting circuit to supply the reference levels while switching the reference levels so as to enable the light quantity determination circuit to execute a plurality of the binary determination with the supplied reference levels for one measurement, thereby specifying the distance to one of the multiple stages based on the thus obtained plurality of the binary determination.
Abstract:
A focus detection device includes a plurality of light receiving sensors having sensitivity characteristics such that their respective visible spectra have different wavelength regions, a focus detection circuit which performs focus detection based on an output of any one of the light receiving sensors, and a determination circuit which determines whether or not the focus detection result is appropriate. If the determination circuit determines that the result is not appropriate, the focus detection circuit performs focus detection based on the output of another light receiving sensor.
Abstract:
A distance measuring sensor applied to the present distance measuring device has three pairs of line sensors and a control circuit arranged in the center thereof. In three pairs of line sensors, the central line sensors have a train of photodetector units and a train of processing units, to be divided into two, for processing output signals of the train of photodetector units. The upper line sensors and lower line sensors are arranged on the upper and lower sides of the train of photodetector units on the right and left of the center line sensors, opposed to the train of processing units. The upper and lower line sensors have the train of photodetector units corresponding to a length of two-divided line-sensor.
Abstract:
An automatic focusing apparatus in which the quantity of auxiliary light can be precisely controlled regardless of conditions of an object to be taken is disclosed. The apparatus includes a passive AF sensor unit, a flash device and a main CPU which controls the flash device as an auxiliary light source for the focus detection, so that the flash device intermittently emits flashes of light. The main CPU increases emission time and emission time interval stepwise from the minimum value when the flash device intermittently emits flashes of light as the auxiliary light source upon detection of the focused state.
Abstract:
A multi-point autofocus system includes a focus detection device which can calculate a defocus amount for each of a plurality of focus detection zones in a picture plane; a selecting device for manually selecting a focus detection zone from the plurality of focus detection zones for which the defocus amount is to be calculated by the focus detection device; and a determining device for determining a valid focus detection zone by which a valid defocus amount can be calculated out of at least one of the plurality of focus detection zones other than the manually-selected focus detection zone, in such a manner that a higher priority is given to a focus detection zone than another focus detection zone of the plurality of focus detection zones in the case where the result of a calculation of the defocus amount of the manually-selected focus detection zone is invalid.
Abstract:
A focus detecting device includes a defocus amount detecting circuit for detecting an amount of defocus obtained at each of a plurality of focus areas disposed within an image plane, a selecting circuit for, on the basis of amounts of defocus detected respectively at the plurality of focus areas, dividing the plurality of focus areas into a plurality of groups and selecting a focus area capturing a target object from among the plurality of groups, a posture sensor for detecting a posture of an apparatus, a weighting circuit for, on the basis of positions of the plurality of focus areas within the image plane, dividing the plurality of focus areas into a plurality of groups and respectively weighting the plurality of groups, the weighting circuit making grouping of the plurality of focus areas differently according to the posture of the apparatus, and a deciding circuit for deciding at least one focus area from among the plurality of focus areas by adding a result of weighting made by the weighting circuit to a result of selection made by the selecting circuit.
Abstract:
The present invention provides a low-cost focus detector that can carry out a focus detection over a wide field of view and can secure a sufficient light-receiving quantity to have an improved S/N ratio and an improved focus detection precision. A camera has a condenser lens disposed near a predetermined focusing surface of an image pick-up lens. At the rear of the condenser lens, a brightness diaphragm having a pair of apertures is disposed. Further, at the rear of the brightness diaphragm, a telecentric type image re-forming lenses are disposed. Images formed by beam fluxes passed through the image re-forming lenses are received by an image pick-up device that includes photoelectric conversion elements.