摘要:
The method for the operation of fuel cell battery (10) comprises a control system (14), through which the electrochemical reactions in cells (11) of the battery are influenced. Gaseous flows (1, 2) of two educts (A, B) are fed into the battery in a controlled manner in a conditionally predetermined ratio of quantities and are passed through the cells separately. The first educt (A) contains oxidizing components, the second educt (B) contains reducing components and the first educt is in particular ambient air. The educt flows (1, 2) are united after passage through the cells and are further treated by means of an afterburning process and with the production of a flow (3) of exhaust gas (C), so that at the conditionally predetermined ratio of quantities the reducing components are completely oxidized. The first educt flow, in particular the air flow, is variable through the control system to a limited extent; it is used for a regulation of the reaction temperature. Simultaneously to the regulation of the reaction temperature the second educt flow is held constant, namely by means of a second regulation (5, 6; 18, 19) which acts on one of the educt flows upstream of the battery inlet (13a, 13b).
摘要:
A water management system for a fuel cell having an anode chamber including a fuel, a cathode chamber in fluid communication with an oxidizing agent, and a proton conducting membrane electrolyte separating the chambers. The system includes a gas plenum, a first valve for controlling a first flow of a gas from the anode chamber into the gas plenum, and a second valve for controlling a second flow of the gas collected by the gas plenum into the cathode chamber. The first valve is opened allowing the first flow while the second valve is closed between the gas plenum and the cathode chamber so that effluent gas is collected in the gas plenum. When the amount of the effluent gas in the gas plenum reaches a predetermined value, the first valve is closed and the second valve is opened to allow the second flow.
摘要:
A method of commencing operation of a fuel cell system which includes a fuel reformer is provided. During a start-up period, the same fuel which is used in the feedstock to the reformer is directed to at least a portion of the fuel cells in the system. These fuel cells provide output power by direct oxidation of the fuel, at least until the reformer is operational, producing a hydrogen-containing gas stream suitable for the fuel cells. Thus, useful output power can be obtained from the system without the delay typically associated with start-up of the reformer.