Abstract:
An electronic ballast for driving a gas discharge lamp comprises an inverter circuit, a resonant tank circuit, and a control circuit operable to determine an approximation of a resonant frequency of the resonant tank circuit and to control the inverter circuit approximation of the resonant frequency. The control circuit determines the approximation of the resonant frequency by adjusting an operating frequency of a high-frequency inverter output voltage provided to the resonant tank circuit from a frequency above the resonant frequency down towards the resonant frequency, measuring the magnitude of a lamp voltage across the lamp, and storing the present value of the operating frequency as the resonant frequency when the magnitude of the lamp voltage reaches a maximum value. The control circuit may control the operating frequency of the inverter output voltage in response to the approximation of the resonant frequency and a target intensity of the lamp.
Abstract:
An electronic ballast circuit for driving a gas discharge lamp is operable to control the lamp to avoid flicking and flashing of the intensity of the lamp during low temperature conditions. The ballast circuit includes an inverter circuit for receiving a DC bus voltage and for generating a high-frequency output voltage, a resonant tank circuit for receiving the high-frequency output voltage and generating a sinusoidal voltage for driving said lamp, and a control circuit operatively coupled to the inverter circuit for adjusting an intensity of the lamp between a minimum intensity and a maximum intensity. The control circuit receives a control signal representative of a lamp temperature of the lamp, and increases the minimum intensity of the lamp if the lamp temperature of the lamp drops below a cold temperature threshold. In addition, the ballast circuit may also include a temperature sensing circuit operable to generate the control signal representative of the lamp temperature of the lamp.
Abstract:
The invention includes an electronic ballast that is operable to receive a ballast factor setting that enables the ballast to provide a desired ballast factor when the ballast drives a lamp. The electronic ballast includes an input that is adapted to receive a ballast factor setting that represents a desired ballast factor for the ballast and a respective lamp. The ballast further includes a memory that is adapted to store the ballast factor setting, and the ballast includes a processor that uses the ballast factor setting stored in the memory to cause the ballast to provide the desired ballast factor as the ballast drives the lamp. The ballast includes means for substantially preventing subsequently changing the ballast factor setting stored in the memory. Various business methods are further provided as a function of the electronic ballast.
Abstract:
The invention includes an electronic ballast that is operable to receive a ballast factor setting that enables the ballast to provide a desired ballast factor when the ballast drives a lamp. The electronic ballast includes an input that is adapted to receive a ballast factor setting that represents a desired ballast factor for the ballast and a respective lamp. The ballast further includes a memory that is adapted to store the ballast factor setting, and the ballast includes a processor that uses the ballast factor setting stored in the memory to cause the ballast to provide the desired ballast factor as the ballast drives the lamp. The ballast includes means for substantially preventing subsequently changing the ballast factor setting stored in the memory. Various business methods are further provided as a function of the electronic ballast.
Abstract:
A boost converter for an electronic dimming ballast for driving a gas discharge lamp has an increased output power range. The boost converter operates in discontinuous conduction mode when a desired intensity of the lamp is below a first threshold intensity, and operates in critical conduction mode when the desired intensity is above a second threshold intensity. The boost converter comprises a delay circuit for introducing an amount of delay into the conduction of current through the boost converter. A control circuit of the ballast is operable to drive the delay circuit and thus control the operation of the boost converter in response to the desired intensity of the lamp. The control circuit is further operable to drive the delay circuit with a pulse-width modulated signal to provide multiple amounts of delay into the operation of the boost converter.
Abstract:
The output current of a ballast is dynamically limited when an over-temperature condition is detected in the ballast according to one of (i) a step function or (ii) a combination of step and continuous functions, so as to reduce the temperature of the ballast while continuing to operate it.
Abstract:
A configurable light-emitting diode (LED) driver is adapted to control a plurality of different LED light sources, which may be rated to operate using different load control techniques, different dimming techniques, and different magnitudes of load current and voltage. The LED driver comprises a power converter circuit for generating a DC bus voltage, and an LED drive circuit for receiving the bus voltage and adjusting either the magnitude of the current conducted through the LED light source or the magnitude of the voltage across the LED light source. The LED driver is operable to dim the LED light source using either a pulse-width modulation technique or a constant current reduction technique, and may be configured using a programming device and a personal computer.
Abstract:
A communication circuit for an electronic dimming ballast provides high-voltage miswire protection and improved rise and fall times of a transmitted digital signal. The electronic dimming ballast comprises a control circuit, which is coupled to a digital communication link, for example, a DALI communication link, via the communication circuit. The communication circuit comprises a receiving circuit for detecting when the digital ballast communication link is shorted and for providing a received digital message to the control circuit. The communication circuit also comprises a transmitting circuit for shorting the communication link in response to the control circuit. The communication circuit also includes a high-voltage fault protection circuit for protecting the circuitry of the communication circuit if the communication circuit high- voltage mains voltages. The communication circuit is operable to reliably transmit digital messages having improved rise and fall times. The communication circuit draws acceptable amounts of current when the communication link is alternatively in idle and active states.
Abstract:
An electronic ballast for driving a plurality of gas discharge lamps in parallel includes a rectifier to convert an AC mains input voltage to a rectified voltage, a filter circuit to convert the rectified voltage to a substantially DC bus voltage, an inverter to convert the DC bus voltage to a high-frequency AC voltage for driving the lamp, and an output stage for coupling the high-frequency AC voltage to the lamps. The ballast also includes a plurality of balancing transformers coupled to the lamps for balancing the currents in the lamps. When one of the parallel lamps is missing or faulty, a substantially large voltage is produced across one or more of the balancing transformers. This large voltage is detected by a missing-lamp detect circuit that provides a control signal to a ballast control circuit. In response to a detected missing-lamp condition, the control circuit stops the ballast from driving the lamps. Optionally, the ballast control circuit can transmit a message regarding the missing-lamp condition via an external communication link.
Abstract:
A load control circuit, such as a light-emitting diode (LED) driver, for controlling the amount of power delivered to electrical load, such as an LED light source, comprises a regulation transistor adapted to be coupled in series with the load, and a feedback circuit coupled in series with the regulation transistor, whereby the load control circuit is able to control the magnitude of a load current conducted through the load from a minimum load current to a maximum load current, which is at least approximately one thousand times larger than the minimum load current. The feedback circuit generates at least one load current feedback signal representative of the magnitude of the load current. The regulation transistor operates in the linear region to control the magnitude of the load current conducted through the load in response to the magnitude of the load current determined from the load current feedback signal.