Abstract:
The present invention relates to a functional optical coherent imaging (fOCI) platform comprising at least one active camera unit (ACU) comprising a coherent and/or a partially coherent light source, and means for spectral filtering and imaging a selected body area of interest; an image processing unit (IPU) for pre-processing data received from an ACU; at least one stimulation unit (STU) transmitting a stimulation to a subject; at least one body function reference measurement unit (BFMU); a central clock and processing unit (CCU), with interconnections to the ACU, the IPU, the STU, for collecting pre-processed data from the IPU, stimuli from the STU body function reference data from the BFMU in a synchronized manner; a post-processing unit (statistical analysis unit, SAU); and an operator interface (HOI). Further the invention relates to a process for acquiring stimuli activated subject data comprising the steps of aligning a body function unit at a subject and monitoring pre-selected body function; selecting a stimulus or stimuli; imaging a body area of interest; exerting one or a series of stimuli on the subject; imaging the body area of interest synchronous with said stimuli and the preselected body functions; and transferring said synchronized image, stimuli and body function data to a statistical analysis unit (SAU) and performing calculations to generate results pertaining to body functions.
Abstract:
The present invention relates to an apparatus and a method combining achromatic complex FDOCT signal reconstruction with a common path and dual beam configuration. The complex signal reconstruction allows resolving the complex ambiguity of the Fourier transform and to enhance the achievable depth range by a factor of two. The dual beam configuration shares the property of high phase stability with common path FDOCT. This is of importance for a proper complex signal reconstruction and is in particular useful in combination with handheld probes such as in endoscopy and catheter applications. The advantages of the present invention are in particular the flexibility to choose arbitrarily positioned interfaces in the sample arm as reference together with the possibility to compensate for dispersion.
Abstract:
The invention relates to an optical coherence microscopy system for fast, phase resolved imaging by means of optical coherence microscopy with decoupled illumination and detection apertures, producing a dark-field effect with an enhanced optical contrast. The setup uses a light source with an appropriate temporal coherence, an interferometer and an array detector combined with a spectrometer. The dark-field effect is produced by optical filter means in the illumination and detection paths, positioned in conjugated planes of the sample microscope objective. These optical means comprise for example refractive or diffractive elements, amplitude or phase masks, or programmable spatial light modulators. The object is scanned via a scanning unit allowing a point scan of the object.
Abstract:
The invention concerns an optical imaging apparatus comprising (o) a light source (1) , (p) sample holding means, (q) an interferometer, (r) reference means, (s) an objective (8) which is adapted to have its sample side focal plane crossing a sample held in said sample holding means, (t) optical or electro-optical means (2, 3, 5, 16) adapted to produce a ring shaped or multi-spot light source in the front focal plane (17) or any conjugated plane (17') of said objective (8) , at least one detector. The invention also includes a method for using said apparatus where the sample is illuminated by an interference pattern and the depth information is obtained by using optical Coherence Tomography.
Abstract:
The present invention relates to an apparatus and a method combining achromatic complex FDOCT signal reconstruction with a common path and dual beam configuration. The complex signal reconstruction allows resolving the complex ambiguity of the Fourier transform and to enhance the achievable depth range by a factor of two. The dual beam configuration shares the property of high phase stability with common path FDOCT. This is of importance for a proper complex signal reconstruction and is in particular useful in combination with handheld probes such as in endoscopy and catheter applications. The advantages of the present invention are in particular the flexibility to choose arbitrarily positioned interfaces in the sample arm as reference together with the possibility to compensate for dispersion.
Abstract:
The invention relates to an optical coherence microscopy system for fast, phase resolved imaging by means of optical coherence microscopy with decoupled illumination and detection apertures, producing a dark-field effect with an enhanced optical contrast. The setup uses a light source with an appropriate temporal coherence, an interferometer and an array detector combined with a spectrometer. The dark-field effect is produced by optical filter means in the illumination and detection paths, positioned in conjugated planes of the sample microscope objective. These optical means comprise for example refractive or diffractive elements, amplitude or phase masks, or programmable spatial light modulators. The object is scanned via a scanning unit allowing a point scan of the object.