Abstract:
Embodiments of organic peroxide formulations provide significant improvements in surface tackiness (often including tack-free surfaces) when curing elastomers in the presence of oxygen. The peroxide formulations may include, for example, one or more compounds selected from sulfur-containing compounds, organophosphite compounds, HALS (Hindered Amine Light Stabilizer) compounds, aliphatic allyl urethane compounds, and blends comprising nitroxides (e.g., 4-hydroxy-TEMPO) and quinones (e.g., mono-tert-butylhydroquinone).
Abstract:
The addition of at least one promoter selected from the group consisting of thiosulfate salts, sulfite salts, bisulfite salts, erythorbate salts, isoascorbate salts, and combinations thereof to an aqueous treatment fluid containing a viscosifying polymer and a peroxide helps to promote the activity of the peroxide as a breaker, thus facilitating a reduction in viscosity of the aqueous treatment fluid at lower temperatures than are possible in the absence of the promoter. The promoted aqueous treatment fluid is useful as a fracture fluid to fracture subterranean formations in oil and gas recovery.
Abstract:
A breaker composition for use in a fracturing fluid comprises at least one organic peroxide (e.g., tert-butyl hydroperoxide), at least one dye (e.g., an FD&C dye), and at least one alcohol (e.g., propylene glycol). A promoter composition for use in a fracturing fluid comprises at least one promoter (e.g., sodium thiosulfate), at least one dye (e.g., an FD&C dye). According to certain embodiments, the dye increases the efficiency of the promoter and/or the organic peroxide, so that the break time and the peak viscosity of the aqueous treatment fluid are reduced.
Abstract:
Stable organic peroxide compositions include at least one organic peroxide (e.g., tert-butyl hydroperoxide), at least one dye (e.g., an FD&C dye), and at least one alcohol (e.g., propylene glycol, tert-butanol, and/or glycerin).
Abstract:
An organic peroxide formulation includes at least one organic peroxide and at least one cellulose compound. Embodiments of the organic peroxide formulations significant improvements in surface tackiness (often including but not limited to tack-free surfaces) when curing elastomers in the presence of oxygen. Embodiments of the present invention relate to organic peroxide formulations that can cure solid elastomers in the full or partial presence of oxygen using, for example, a hot air oven or tunnel, molten salt bath, or steam autoclave. Embodiments of the invention also relate to crosslinkable elastomer compositions, processes for curing the elastomers, and products made by such processes.