Abstract:
An organic peroxide formulation comprises at least one organic peroxide, at least one drying oil, and at least one free radical trap. A process comprises curing mixtures that include at least one elastomer and the organic peroxide formulation in the presence of oxygen. Elastomer compositions, methods of manufacturing elastomer articles, and elastomer articles made from the elastomer compositions are also disclosed.
Abstract:
Non-polymeric coupling agent formulation for producing wood-polymer composites include at least one organic peroxide and a non-polymeric bio-based additive that includes at least one of a bio-based oil or a bio-based acid or derivatives of bio-based oils or acid is provided. The coupling agent formulations are capable of producing polymer matrix composites having improved strength and aging characteristics. The improved strength may be related to physical properties such as improved stiffness, toughness or tensile strength. A masterbatch utilizing the non-polymeric coupling agent formulation is provided, as well as a method making the masterbatch.
Abstract:
A coupling agent formulation for cellulosic material-polymer composites is provided. The formulation includes a) at least one organic peroxide; and b) at least one of i) at least one zinc-containing reagent; and/or ii) at least one silicon-containing reagent. The coupling agent formulations produce polymer matrix cellulosic material composites with improved strength and aging characteristics. The improved strength may be related to physical properties such as improved stiffness, toughness or tensile strength. A masterbatch utilizing the coupling agent formulation is provided, as well as a method making the masterbatch.
Abstract:
Embodiments of organic peroxide formulations provide significant improvements in surface tackiness (often including tack-free surfaces) when curing elastomers in the presence of oxygen. The peroxide formulations may include, for example, one or more compounds selected from sulfur-containing compounds, organophosphite compounds, HALS (Hindered Amine Light Stabilizer) compounds, aliphatic allyl urethane compounds, and blends comprising nitroxides (e.g., 4-hydroxy-TEMPO) and quinones (e.g., mono-tert-butylhydroquinone).
Abstract:
Formulations for producing modified bio-based polymers, especially bio-based polyesters like PLA and/or biodegradable polymers like PBAT, include at least one organic peroxide and at least one bio-based reactive additive. The at least one organic peroxide and/or the at least one bio-based reacted additive are capable of reacting with a bio-based polymer and/or biodegradable polymer to produce the modified bio-based and/or modified biodegradable polymer. The modified bio-based and/or modified biodegradable polymers have improved properties compared to non-modified bio-based and/or biodegradable polymers. The improved properties may related to processability, especially improved melt strength which results in easier processing while producing foamed polymers, thin films, such as blown film, cast film, tentered film and the like. The improved properties may be related to physical properties such as improved stiffness, toughness or tensile strength.
Abstract:
An organic peroxide formulation includes at least one organic peroxide and at least one cellulose compound. Embodiments of the organic peroxide formulations significant improvements in surface tackiness (often including but not limited to tack-free surfaces) when curing elastomers in the presence of oxygen. Embodiments of the present invention relate to organic peroxide formulations that can cure solid elastomers in the full or partial presence of oxygen using, for example, a hot air oven or tunnel, molten salt bath, or steam autoclave. Embodiments of the invention also relate to crosslinkable elastomer compositions, processes for curing the elastomers, and products made by such processes.
Abstract:
A peroxide formulation includes at least one peroxide and at least one compound having a secondary amine group selected from amino acids, such as arginine, folic acid, and polyethyleneamines. The peroxide formulation is capable of curing an aqueous elastomer such as a latex in the full or partial presence of oxygen. Methods of using the peroxide formulation include dip-molding latex elastomer compositions.