Abstract:
A sealed tilt pour electric induction furnace and furnace system is provided for supplying a reactive molten material from the furnace to a reactive molten material processing apparatus without exposing the reactive molten material to the ambient environment. The rotating component of a rotary union is connected to the furnace's enclosed furnace pour spout and rotates simultaneously with the tilt pour furnace about a common horizontally oriented rotational axis to supply the reactive molten material to the reactive molten material processing apparatus connected to the stationary component of the rotary union.
Abstract:
An electric induction furnace for melting and holding a reactive metal or alloy is provided with an upper furnace vessel, an induction coil positioned below the upper furnace vessel, and a melt-containing vessel positioned inside the induction coil with a gap between the outside surface of the melt-containing vessel and the inside surface of the induction coil that can be used to circulate a cooling fluid for cooling the wall of the melt-containing vessel to inhibit leakage of the reactive metal or alloy melt from the vessel. The melt containing vessel can be integrated with a cooling system for cooling the melt-containing vessel. The melt-containing vessel, induction coil and cooling system can be provided as modular components to facilitate servicing of the melt-containing vessel, the induction coil and the cooling system.
Abstract:
A clean cell environment for a continuous roll-over electric induction batch casting furnace system is provided where each combination of batch charge, for example an ingot, induction melting (ingot-melt) process and mold-pour process are performed in a clean cell environment and each combination ingot-melt and mold-pour process is traceable as to the identity of the specific ingot, or other charge form (composition) and the mold (fabrication identifier).
Abstract:
An integrated process control installation is provided for electric induction metal melting furnaces with variable furnace states. The integrated process control installation can include supporting charge delivery and slag removal installations, and furnace process operations for process control of melting metal in the furnaces. The variable furnace states, supporting installations, and furnace process operations are controlled by a supporting processing installation, while a robotic apparatus performs the furnace process operations.