Abstract:
Device discovery at long ranges using directional antenna patterns for both transmission and reception of discovery beacon messages and discovery beacon response messages. Omnidirectional band transmissions to assist aiming a directional antenna are also described. Further, discovery beacons that include only those information elements which are necessary for device discovery are discussed, as well as separate scheduling beacons. The discovery beacon may include more robust encoding to increase discovery range or may be transmitted using a narrower channel to improve signal to noise ratio.
Abstract:
Described herein are methods to enable wireless cellular operation in unlicensed and lightly licensed, (collectively referred to as license exempt spectrum. Cognitive methods are used to enable use of unlicensed bands and/or secondary use of lightly licensed bands. Wireless devices may use licensed exempt spectrum as new bands in addition to the existing bands to transmit to a wireless transmit/receive unit (WTRU) in the downlink direction, or to a base station in the uplink direction. The wireless devices may access license exempt spectrum for bandwidth aggregation or relaying using a carrier aggregation framework. In particular, a primary component carrier operating in a licensed spectrum is used for control and connection establishment and a second component carrier operating in a licensed exempt spectrum is used for bandwidth extension.
Abstract:
Methods and apparatus are described for compressing channel state information (CSI) in time-domain based on path location information for CSI feedback. Downlink (DL) CSI is compressed in the time domain and fed back by not sending the multipath location information, or sending at a very low rate. In one method, a wireless transmit/receive unit (WTRU) selects the strongest multipath components based on channel characteristics. The multipath components are quantized in the time domain via direct or vector based quantization. The base station reconstructs a channel impulse response from the fed back quantized multipath components and applies same to precoding processing. In another method, the WTRU feeds back information associated with a narrowband portion(s) of a system spectrum. The selected narrowband portion(s) have sufficient density over time to allow good precoding per subband or across the system spectrum. Short term feedback may be augmented with long term channel information.
Abstract:
A method and apparatus are disclosed for communication in a Millimeter Wave Hotspot (mmH) backhaul system which uses mesh nodes. A mmH mesh node may receive a control signal which includes a total number of available control slots. The mesh node may determine the number of iterations of a resource scheduling mechanism that can be made during the time period of all available control slots, based on the number of neighbor nodes for the mesh node. Further, the mesh node may receive control slot information, including information about traffic queues and priorities. The mesh node may then perform resource scheduling using the resource scheduling mechanism based on the currently received control slot information and control slot information received in previous iterations of resource scheduling. The mesh node may also adjust a preamble based on a time between a last packet transmission and a current packet transmission to a neighboring node.
Abstract:
Methods and apparatus for changing cell range coverage are disclosed. The coverage may be changed on a per-subframe basis. An antenna beam elevation tilting angle may be adjusted to provide different effective downlink (DL) coverage. For example, a subframe may be a small tilt subframe or a large tilt subframe. A network or evolved NodeB (eNB) may determine data channel transmission power to adjust cell range per subframe. Low Power Subframe (LPS) may be used alone or with Almost Blank Subframe (ABS) to transmit data. Timing Advance (TA) handling for uplink (UL) transmissions is described. A common TA (CTA) may be determined for multi-site UL signaling. UL power control may be determined for UL transmission to multiple sites. Radio Link Monitoring (RLM) may be performed for multiple sites on a carrier frequency. A wireless transmit/receive unit (WTRU) may maintain synchronization in selected subframes for multiple cells.
Abstract:
A method and apparatus for signal processing in a wireless transmit receive unit (WTRU), including generating a plurality of data bits and a plurality of control bits, mapping the data bits and control bits to one or more codewords, multiplexing the data bits and control bits, dividing the bits into layers, allocating control bits to each layer based on a channel quality of each codeword and a channel quality of each layer, and channel interleaving each layer for output to one or more antennas.
Abstract:
A method and apparatus are disclosed for establishing a low latency millimeter wave (mmW) backhaul connection. A base station receives a mmW relay schedule from an evolved Node B (eNB) within one Long Term Evolution (LTE) scheduling interval. The base station decodes the mmW relay schedule, and initializes a mmW radio transmission resource according to the mmW relay schedule. The base station receives a data packet from a second base station in a mmW transmission time interval (TTI) based on the mmW relay schedule using the initialized mmW radio transmission resource, and transmits the data packet to a third base station based on the mmW relay schedule using the initialized mmW radio transmission resource. The transmitting begins before the reception of the data packet is complete and the data packet is transmitted from the first relay node and received by the last relay node within the same mmW TTI.
Abstract:
A method and apparatus for association in a mesh network may be disclosed. A method in a new node may include performing a discovery procedure with a plurality of peer nodes in the mesh network, initiating a temporary association procedure with each peer node, selecting a set of peer nodes from the plurality of peer nodes based on a selection algorithm at least based on a signal-to-interference and noise ratio (SINR) with each peer node and an interference impact of each peer node, and performing a final association with the selected set of peer nodes.
Abstract:
Methods and apparatus for local data caching are disclosed. Data may be stored in a local data storage connected to a base station or network nodes. The data flow may be split. The base station may coordinate with a cooperating base station for split-data transmission of locally cached data. Data may be split at different layers.
Abstract:
A method and apparatus for using demodulation reference signal (DM-RS) based channel state information (CSI) feedback in Orthogonal Frequency Division Multiplexing - multiple-input multiple-output (OFDM-MIMO) systems is disclosed. The wireless transmit/receive unit (WTRU) receives one or more resource blocks from a base station, wherein the resource blocks (RBs) include demodulating reference signals (DM-RS) and precoder information. The precoder information is sent unicast or broadcasted over a common control channel. The WTRU estimates an effective channel estimate based on the DM-RS, derives an unprecoded channel based on the effective channel and the precoder information, generates CSI feedback based on the unprecoded channel, and transmits the CSI feedback to the base station. Alternatively, the WTRU estimates an effective channel estimate based on the DM-RS, quantizes the effective channel estimate and transmits the CSI feedback to the base station.