Abstract:
Composite parts (100) and methods of making the same are disclosed. A composite part may include an internal insert component (124) made of a first material. The internal insert component may be provided with surface features such as mechanical surface features or material surface features, on at least a portion of its surface. The composite part may further include an external part component (136) that is cast around at least a portion of the internal insert component, and is made of a second material different from the first material. The surface features of the internal insert component may help establish a bond within the composite part between the internal insert component and the external part component.
Abstract:
Composite parts and methods for making the same are disclosed. A composite part may include an internal insert component that is coated on at least a portion of its surface with certain types of particles, an external part component cast around the coated insert, and a particle-rich region that is formed between the two components, where the particle-rich region includes particles from the coated insert. A method for producing a composite part may include the steps of: positioning an internal insert component that is coated on at least a portion of its surface within a mold cavity of a casting die; casting a molten material of the external part component around the coated insert; and solidifying the molten material to form the external part component of the composite part.
Abstract:
Composite parts (10), methods of making the same (400), and tooling systems (200) for making the same are disclosed. According to one example, a high-pressure die casting process is used to manufacture a composite part (10) that is made from a composite metal material (12) with a metal matrix phase (20) and a particle phase (22) and includes an interior region (14) and an exterior region (16), where an average concentration of the particle phase (22) in the composite metal material (12) is higher in the exterior region (16) than in the interior region (14). An interior surface (206a, 206b) of a die mold (206) may be coated with a particle phase (22) (e.g., a ceramic-based material) and a molten metal matrix phase (20) (e.g., an aluminum -based material) may then be introduced into the die mold (206) such that a composite part (10) is formed with an exterior region (16) or outer layer that is particle-rich compared to an interior region (14).