摘要:
The present invention relates to the photovoltaic production of hydrogen gas and conductive polymers, particularly an electrolytic cell, comprising: an electrolyte solution, comprising water, an acid and a monomer for producing a conductive polymer; an anode and a cathode in fluid contact with the electrolyte; and an electricity source, which is in electrical contact with the anode and the cathode, wherein the electricity source converts light from a light source into electricity, wherein, in use, the electricity source provides a voltage to the electrolytic cell that is sufficient to oxidize the monomer and produce hydrogen gas at the cathode. The present invention also relates to a process for the photovoltaic production of hydrogen gas and conductive polymers and products obtained therefrom.
摘要:
본 발명은 고율충방전 특성이 향상된 전해질 및 이를 이용한 캐패시터에 관한 것으로 보다 상세하게는 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물을 포함하는 고율충방전 특성이 향상된 전해질 및 이온의 이동속도를 개선시키는 물질을 전극에 도포하고, 상기 도포된 전극을 갑압함침하고 전지를 조립하고, 조립된 전지에 전해질을 주입하고, 전해질주입 후 전지를 완성하여 제조하되, 상기 이온의 이동속도를 개선시키는 물질은 화학식 1 내지 화학식 12 중에서 1이상 포함된 화합물인 것을 특징으로 하는 고율충방전 특성이 향상된 캐패시터를 제공한다.
摘要:
Methods of increasing an energy density of an energy storage device involve increasing the capacitance of the energy storage device by depositing a material into a porous structure of the energy storage device using an atomic layer deposition process, by performing a procedure designed to increase a distance to which an electrolyte penetrates within channels of the porous structure, or by placing a dielectric material into the porous structure. Another method involves annealing the energy storage device in order to cause an electrically conductive substance to diffuse to a surface of the structure and form an electrically conductive layer thereon. Another method of increasing energy density involves increasing the breakdown voltage and another method involves forming a pseudocapacitor. A method of increasing an achievable power output of an energy storage device involves depositing an electrically conductive material into the porous structure.
摘要:
Solar cells with enhanced efficiency are disclosed. An example solar cell includes a first electrode (12). The first electrode (12) includes an electron conductor film (14). A quantum dot layer (16) is coupled to the electron conductor film (14). An electrolyte solution (18) is disposed adjacent to the quantum dot layer (16). A second electrode (20) is electrically coupled to one or more of the electrolyte solution (18) and the quantum dot layer (16). The second electrode (20) includes a sulfur-containing coating compound (24), and the electrolyte is a polysulfide electrolyte.
摘要:
A process for forming a solid electrolytic capacitor and an electrolytic capacitor formed by the process. The process includes: providing an anode wherein the anode comprises a porous body and an anode wire extending from the porous body; applying a thin polymer layer onto the dielectric, and forming a dielectric on the porous body to form an anodized anode; applying a first slurry to the anodized anode to form a blocking layer wherein the first slurry comprises a first conducting polymer with an median particle size of at least 0.05 µm forming a layer of crosslinker on the blocking layer; and applying a layer of a second conducting polymer on the layer of crosslinker.
摘要:
An energy charge storage device, particularly from the group consisting of super capacitor, a hybrid electrochemica capacitor, a metal hydride battery and a fuel cell, comprising a first and second electrode and an electrolyte wherein the electrolyte comprises a printable polyelectrolyte e.g. polystyrene sulfonic acid (PSSH). The present invention also refers to methods of obtaining such energy storage device.
摘要:
L'invention concerne des sulfonates aromatiques, leur préparation, leur utilisation comme sel d'un électrolyte. Les sulfonates ont la formule [Ar-Z- (CF 2 ) n -CFR f -SO 3 - ] p M p+ (I). Z est un groupe sulfure, sulfinyle, ou sulfonyle. L est un groupe - (CF 2 ) n -CFR f -. n est 0 ou 1. R f est F ou un groupe perf luoroalkyle. Ar est un groupement aromatique. M représente H, un cation de métal alcalin, de métal alcalino-terreux, de métal trivalent ou tétravalent, ou un cation organique. Le procédé consiste à préparer un sulfinate (III), à transformer le sulfinate (III) en fluorure de sulfonyle (II) par réaction avec un agent de fluoration, puis à transformer le fluorure de sulfonyle (II) en sulfonate (I) par réaction avec un hydroxyde.
摘要:
L'invention concerne des sulfonates aromatiques, leur préparation, leur utilisation comme sel d'un électrolyte. Les sulfonates ont la formule [Ar-Z- (CF 2 ) n -CFR f -SO 3 - ] p M p+ (I). Z est un groupe sulfure, sulfinyle, ou sulfonyle. L est un groupe - (CF 2 ) n -CFR f -. n est 0 ou 1. R f est F ou un groupe perf luoroalkyle. Ar est un groupement aromatique. M représente H, un cation de métal alcalin, de métal alcalino-terreux, de métal trivalent ou tétravalent, ou un cation organique. Le procédé consiste à préparer un sulfinate (III), à transformer le sulfinate (III) en fluorure de sulfonyle (II) par réaction avec un agent de fluoration, puis à transformer le fluorure de sulfonyle (II) en sulfonate (I) par réaction avec un hydroxyde.
摘要:
A non-aqueous electrolyte for an electrical storage device comprising a non-aqueous solvent, a salt dissolved in said non-aqueous solvent, and a liquid viscosity reducing agent in sufficient quantity to substantially reduce the viscosity of the electrolyte below the viscosity of the non-aqueous solvent.
摘要:
A solid electrolytic capacitor comprising an oxide coating film formed on a valve action metal and an electroconductive polymer composition, wherein an electrolyte contains, as a dopant, (1) an alkoxy-substituted naphthalene monosulfonic acid anion, (2) a heterocyclic sulfonic acid anion or (3) an anion of an aliphatic polycyclic compound, or further contains another anion serving as a dopant, and a method for preparing the same. A capacitor of the present invention is excellent in resistance to voltage, high-frequency properties, tan delta , leakage characteristics, resistance to heat (reflow characteristics) and the like.