Abstract:
Methods for cleaning or stimulating a well include providing an isolation device (l00), providing a penetration device (105), isolating a zone (120), and penetrating a portion of the formation (115) utilizing the penetration device. Isolating and penetrating may occur in a single trip into the well. The isolation device may include one or more packers. The penetration device may be a pulsating/oscillating hydrajet that introduces fluid pressure waves into the formation.
Abstract:
Sealing may be provided between alignable windows for lateral wellbore drilling. A method for use with a lateral wellbore includes the steps of : positioning a swellable seal material between a closure device and a housing of a window assembly; swelling the seal material to thereby prevent fluid transfer through a window formed in a sidewall of the housing; and then installing the window assembly in a parent wellbore. A lateral wellbore system includes a window assembly with a window formed through a sidewall of a generally tubular housing, and a swollen seal material preventing fluid transfer through the window. A window assembly includes a generally tubular housing having a window formed through a sidewall of the housing, a closure device having another window formed through a wall of the closure device; and a swellable seal material which prevents fluid transfer between the windows.
Abstract:
A swellable packer with composite material end rings. A packer assembly includes at least one generally tubular seal element extending longitudinally between opposite ends thereof. At least one end ring is positioned proximate one of the seal element opposite ends. The end ring includes a nonmetal material. A method of constructing a packer assembly includes the steps of : chemically bonding at least one end ring to a base pipe; providing at least one generally tubular seal element which extends longitudinally between opposite ends thereof; and restricting longitudinal displacement of the seal element relative to the base pipe utilizing the end ring positioned at one of its opposite ends.
Abstract:
A packer (80) for establishing sealing engagement with a surface disposed in a wellbore includes a packer mandrel (90) and a seal assembly (100, 102, 104) slidably disposed about the packer mandrel (90). The seal assembly (100, 102, 104) has a running position and a radially expanded sealing position. A piston (122) is slidably disposed about the packer mandrel (90) and operably associated with the seal assembly (100, 102, 104). A collet assembly 145 is disposed about the packer mandrel (90) and is releasably coupled to the piston (122) such that radially inwardly shifting at least portion of the collet assembly (145) decouples the collet assembly (145) from the piston (122) allowing the piston (122) to shift longitudinally relative to the packer mandrel (90) which operates the seal assembly (100, 102, 104) from the running position to the radially expanded sealing position, thereby setting the packer (80).
Abstract:
Provided are methods that include a method comprising: placing a clean fluid comprising proppant particulates into a portion of a fracture in a subterranean formation, and depositing one or more of the proppant particulates into the fracture to form a partial monolayer. In another aspect, the invention provides methods that include placing a degradable fluid loss additive comprising collagen into a subterranean formation.
Abstract:
Provided herein are methods and compositions that include a method comprising providing an annulus between a first tubing and a second tubing; providing an aqueous-based insulating fluid that comprises an aqueous base fluid, a water-miscible organic liquid, and a layered silicate; and placing the aqueous-based insulating fluid in the annulus. A composition provided includes an aqueous-based insulating fluid comprising an aqueous base fluid, a water-miscible organic liquid, and a layered silicate.
Abstract:
Apparatus and methods for measuring properties of formation material and fluid in a borehole wall. In some embodiments, the apparatus includes a cylinder with a drawdown piston slideably disposed therein, a probe assembly and a passageway configured to provide fluid communication between the probe assembly and the cylinder. The probe assembly has a housing, a piston slideably disposed within the housing, the piston having a throughbore and a pad coupled thereto, and a tubular slideably disposed within the throughbore. The drawdown piston is translatable from a first position toward a second position to draw fluid into the probe assembly, the passageway and the cylinder, and translatable from the second position toward the first position to increase pressure of fluid in the passageway.
Abstract:
A method and apparatus for perforating and isolating perforations in a wellbore. A perforating and isolating apparatus includes at least one packer having a swellable seal material, and a perforating assembly attached to the packer. A method of perforating and isolating perforations in a subterranean wellbore includes the steps of: positioning an apparatus in the wellbore, the apparatus including at least one packer having a swellable seal material, and a perforating assembly attached to the packer; isolating at least one existing perforation by swelling the seal material; and forming at least one new perforation by actuating the perforating assembly.
Abstract:
Methods and systems for improving the efficiency of a pumping process by controlling the operation of the pumps involved based on certain parameters characterizing the pump. A pump unit is coupled to a pump controller which is in turn, coupled to a pump modulator. A master controller drives the pump modulator based on a desired output parameter for the system. The pump modulator then drives each pump unit through its corresponding pump controller in a manner for the system to achieve optimal performance.
Abstract:
Apparatus and methods for measuring properties of formation material and fluid in a borehole wall. In some embodiments, the apparatus includes a cylinder with a drawdown piston slideably disposed therein, a probe assembly and a passageway configured to provide fluid communication between the probe assembly and the cylinder. The probe assembly has a housing, a piston slideably disposed within the housing, the piston having a throughbore and a pad coupled thereto, and a tubular slideably disposed within the throughbore. The drawdown piston is translatable from a first position toward a second position to draw fluid into the probe assembly, the passageway and the cylinder, and translatable from the second position toward the first position to increase pressure of fluid in the passageway.