Abstract:
A thermostat includes a memory configured to store operating conditions for previously run conditioning events. The thermostat further includes a controller configured to receive first temperature data from a first temperature sensor indicative of a current indoor ambient temperature inside; receive second temperature data from a second temperature sensor indicative of a current outdoor ambient temperature outside; receive a temperature setpoint for a desired indoor ambient temperature of the building; determine a severity of a call for conditioning based on at least one of the current indoor ambient temperature, the current outdoor ambient temperature, and the temperature setpoint; and operate the multi-stage HVAC system in one of the plurality of stages for a current conditioning event based on the severity of the call for conditioning and the operating conditions for a similar previously run conditioning event to drive the current indoor ambient temperature towards the temperature setpoint.
Abstract:
For operating a thermal energy exchanger (1) for exchanging thermal energy between a thermal transfer fluid and air, a plurality of measurement data sets are recorded in a control system (40). The measurement data sets include for a different point in time data values which define a normalized energy transfer that represents the thermal energy transferred in the thermal energy exchanger (1) normalized by one or more normalization variables. The control system (40) calculates for each of the measurement data sets a normalized data point defined by the normalized energy transfer. The control system (40) further determines for the thermal energy exchanger (1) a characteristic energy transfer curve which fits the normalized data points. Normalizing the energy transfer makes it possible to operate the thermal energy exchanger (1) more efficiently over a wider range of changing conditions, as saturation can be prevented using more appropriate fixed or variable thresholds.
Abstract:
A climate control system (20) for an animal house (10) is configured by determining a minimum ventilation curve for required minimum ventilation. A plurality of ventilation stages is created based on the minimum ventilation curve and the plurality of ventilation fans (23) in the climate control system, each stage providing a percentage of the required minimum ventilation. Creating the stages includes prioritizing the ventilation fans to create a selection hierarchy and determining a minimum stage ventilation and a maximum stage ventilation for each stage. Ventilation fans are selected following the hierarchy that provides the desired percentage of the minimum required ventilation. An increment between a maximum stage ventilation and a minimum stage ventilation for the next higher stage is defined, wherein the minimum capacity level is a function of the minimum capacity of the group of fans added to the next higher stage and the maximum capacity for the next higher stage is determined based on the increment.
Abstract:
A method for controlling temperature in a thermal zone within a building, comprising: using a processor, receiving a desired temperature range for the thermal zone; determining a forecast ambient temperature value for an external surface of the building proximate the thermal zone; using a predictive model for the building, determining set points for a heating, ventilating, and air conditioning ("HVAC") system associated with the thermal zone that minimize energy use by the building; the desired temperature range and the forecast ambient temperature value being inputs to the predictive model; the predictive model being trained using respective historical measured value data for at least one of the inputs; and, controlling the HVAC system with the set points to maintain an actual temperature value of the thermal zone within the desired temperature range for the thermal zone.
Abstract:
For allowing a reliable heating and/cooling of a component of a facility or building with high efficiency a method for operating a thermal system is claimed, wherein a component of a facility or building has to be heated and/or cooled by the thermal system and wherein a control mode of the thermal system is selected for bringing and/or maintaining the component to or at a definable temperature value or to or within a definable temperature value range. The method is characterized in that the control mode is dynamically selected from multiple different control modes under consideration of at least one boundary condition of the component and/or at least one environmental context parameter and under consideration of data regarding learnt/adapted thermal behaviour of the component. Further an according thermal system is claimed, preferably for carrying out the above mentioned method.