Abstract:
A number of power headroom solutions are disclosed, including but not limited to signaling of a bandwidth part (BWP) specific maximum outpower by a gNB to a UE, signaling of a beam specific maximum output power by the gNB to the UE, signaling by the UE to the gNB of the UE setting of BWP configured maximum transmit output power, signaling by the UE to the gNB of the UE setting of beam or group of beam configured maximum transmit output power, signaling by the UE to the gNB of BWP specific power headroom report, signaling by the UE to the gNB of beam or group of beam specific power headroom report and rules for power headroom reporting when the UE has overlapping resource grants.
Abstract:
Methods, systems, and apparatuses are described herein for beamforming based initial access, beam management, and beam based mobility designs for NR systems. Issues are identified and addressed related to, for example, initial access, control channel design, eMBB and URLLC mixing, and beam training.
Abstract:
Current approaches to transmitting uplink data in a network often require resources to be granted. In an example, a node or apparatus may configure a plurality of devices to operate in a grant-less mode in accordance with a respective grant-less access allocation. Grant-less operations may be managed, for example, to meet the reliability and latency requirements and battery life requirements for different types of devices. For example, the state transition between grant-less and grant based may be managed.
Abstract:
A common Data Analytics Service (DAS) at service layer is designed to use underlying existing/future data analytics technologies or tools and provide them to service layer entities that need those data analytics operations with uniform access approach. A general operation framework/interface design is used for enabling DAS and the operation details within DAS. Related procedures for interacting with DAS, including the new parameters in service layer request/response messages can be used.
Abstract:
Hybrid automatic repeat request (HARQ) processes, indicators, and similar methods may be used improve new radio performance in a number of ways. For example HARQ processes may be retransmitted, even before a response is expected, a number of times. Separate acknowledgement may be provided for various code blocks within a single transport block. Multi-bit ACK/NACK signaling may be used to efficiently express the status of individual code blocks or groups of code blocks within a transmission block. Grantless transmissions may be acknowledged implicitly, e.g., via responses comprising downlink control information or sent via a physical hybrid automatic repeat request indicator channel.
Abstract:
System information can include a basic set of system information and additional system information. A UE can receive the basic set of system information and then later request or receive the additional system information. Messages can use tags which can be used to look up locally stored system information. If a tag does not correspond to any locally stored system information, the system information and an associated tag can then be requested. Messages can be indicative of a cluster identity associated with cells. When the UE goes into a new cell, the cluster identity can be checked to see if system information from a prior call can be reused.
Abstract:
Methods and procedures allow devices interwork with various types of service layers by updating the device to support the protocol of the M2M/IoT service layer that is being communicated with. Devices can coordinate/initiate download of a service layer API that is compatible with the service layer the device is attempting to use. A service layer can coordinate the autonomous update of a device with the proper service layer API which allows the device to then communicate and use services supported by the service layer component to the device. A service layer can detect a device or application lacking proper service layer functionality and can trigger a management entity to update the device or application with the service layer API required such that the device can then register to the service layer and use its services. A device or application can be customized or optimized to the service layer that it is registered to and using.
Abstract:
A subscription analyzing and grouping mechanism can group similar subscription requests from different subscribers and generates an aggregated notification for them. The subscription analyzing and grouping mechanism reduces the number of subscription request messages and notification messages and in turn improves subscription efficiency and makes M2M/IoT service layer more efficient and scalable.
Abstract:
A link management service may dynamically configure one or more link-enabling attributes based on a link profile. There may be multiple types of architectures that support the link management service, such as an independent link management and integrated link management.
Abstract:
A system is disclosed for providing inter-system mobility in integrated LTE and WiFi systems. A control plane interface, referred to as the Sla-C interface, is defined between a trusted WLAN access network (TWAN) and a mobility management entity (MME) comprised in an LTE wireless access network. A user plane interface, referred to as the S 1 a-U interface, is defined between the TWAN and a server gateway (SGW) in the LTE wireless access network. The MME operates as a common control plane entity for both LTE and TWAN access, while the SGW operates as a user plane gateway for both LTE and TWAN. The integrated MME and SGW allow for user equipment (UE) to access the capabilities of a packet data network (PDN) through either the LTE access network or TWAN.