Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.
Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device 10. In one embodiment, an electronic device 10 may include a component, e.g., 20, 32, 24, that is disposed behind a window 24 configured to selectively become transparent or opaque, such as a polymer- dispersed liquid crystal PDLC window. The component includes an image capture device 20, a strobe flash 32, a biometric sensor 34, a light sensor, a proximity sensor, or a solar panel, or a combination thereof. Additionally, the electronic device 10 includes data processing circuitry 12 configured to determine when an event requesting that the component be exposed occurs. Furthermore, the electronic device 10 includes a window controller 22 that may control the window 24 to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
An electronic device may be provided with a display and wireless circuits. The wireless circuits may include antenna structures and radio-frequency transceiver circuitry that transmits and receives radio-frequency signals using the antenna structures. A ground plane for the antenna structures may be located in the center of the electronic device under the display. A resonating element may be used to reduce signal interference that otherwise arises when simultaneously operating the display and the antenna structures. The resonating element may be implemented using an L-shaped structure have an arm that extends parallel to one of the edges of the display.
Abstract:
A display device (10) has a thin-film transistor (TFT) substrate ("layer" 14B). One or more holes (50A) in the TFT substrate act as ducts for conductive bridges (56) connecting display circuitry (53) on the TFT substrate to a printed cirucit (58) circuitry located underneath the substrate. The conductive bridges may be formed using wire bonding. The wire bonds may be encapsulated with potting material to improve their reliability and to increase the resiliency of the display. Display signal lines fed through the holes (50A) in the TFT substrate, run along the underside of the display (14) so that the amount of space required for display circuitry at the display edge is reduced. Alternatively, contact is achieved by depositing a conducting material in the hole, in conjunction with wire bonds and flexible circuits. Display types can include LCD, OLED, plasma, electronic ink, electrochromic, and electrowetting technologies.
Abstract:
Techniques are provided for removing thermal gradients from an organic light emitting diode (OLED) display (34). In one embodiment, an OLED display device (36) includes a thermally conductive layer (76) placed between electronic components housed within the device (18, 24, 26, 28) and the OLED display (34). Heat given off by the electronic components is transferred from warm to cold regions of the thermally conductive layer to create a more uniform ambient temperature across the back of the OLED display. Some embodiments indicate a position of the thermally conductive layer within layers of an OLED display stack (e.g., between a glass substrate and polyimide layer). Some embodiments include a specific range of thermal conductivities and/or thicknesses desired for the thermally conductive layer.
Abstract:
Electronic devices may be provided that contain flexible displays and internal components. An internal component may be positioned under the flexible display. The internal component may be an output device such as a speaker that transmits sound through the flexible display or an actuator that deforms the display in a way that is sensed by a user. The internal component may also be a microphone or pressure sensor that receives sound or pressure information through the flexible display. Structural components may be used to permanently or temporarily deform the flexible display to provide tactile feedback to a user of the device. Electronic devices may be provided with concave displays or convex displays formed from one or more flexible layers including a flexible display layer. Portions of the flexible display may be used as speaker membranes for display-based speaker structures.
Abstract:
An electronic device may be provided with a display having a flexible substrate (60) with bent edges (58). The flexible substrate may have a planar active region (54) that includes an array of light - emitting elements such as organic light - emitting diodes with associated control lines. The flexible substrate may also have inactive regions that lie outside of the active region. The bent edges may be formed from portions of the flexible substrate in the inactive regions. Traces (62) for distributing control signals to the control lines in the active region may be formed in the inactive regions. Corner openings may be formed at the corners of the flexible substrate to accommodate bending of the flexible substrate in the inactive regions. A jumper (76) or a portion of the flexible substrate that lies outside of a corner opening may be used to convey signals between traces on adjoining inactive regions.