Abstract:
Electronic devices may be provided that contain flexible displays and internal components. An internal component may be positioned under the flexible display. The internal component may be an output device such as a speaker that transmits sound through the flexible display or an actuator that deforms the display in a way that is sensed by a user. The internal component may also be a microphone or pressure sensor that receives sound or pressure information through the flexible display. Structural components may be used to permanently or temporarily deform the flexible display to provide tactile feedback to a user of the device. Electronic devices may be provided with concave displays or convex displays formed from one or more flexible layers including a flexible display layer. Portions of the flexible display may be used as speaker membranes for display-based speaker structures.
Abstract:
Systems, methods, and devices are disclosed for applying concealment of components of an electronic device 10. In one embodiment, an electronic device 10 may include a component, e.g., 20, 32, 24, that is disposed behind a window 24 configured to selectively become transparent or opaque, such as a polymer- dispersed liquid crystal PDLC window. The component includes an image capture device 20, a strobe flash 32, a biometric sensor 34, a light sensor, a proximity sensor, or a solar panel, or a combination thereof. Additionally, the electronic device 10 includes data processing circuitry 12 configured to determine when an event requesting that the component be exposed occurs. Furthermore, the electronic device 10 includes a window controller 22 that may control the window 24 to become transparent, to expose the component upon the occurrence of the event requesting that the component be exposed.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include antenna structures that are formed from an internal ground plane and a peripheral conductive housing member. A conductive path may be formed that connects the peripheral conductive housing member and the internal ground plane. The conductive path may include a flex circuit. A metal structure may be welded to the peripheral conductive housing member. A solder pad and other traces in the flex circuit may be soldered to the metal structure at one end of the conductive path. At the other end of the conductive path, the flex circuit may be attached to the ground plane using a bracket, screw, and screw boss.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include antenna structures that are formed from an internal ground plane and a peripheral conductive housing member. A conductive path may be formed that connects the peripheral conductive housing member and the internal ground plane. The conductive path may include a flex circuit. A metal structure may be welded to the peripheral conductive housing member. A solder pad and other traces in the flex circuit may be soldered to the metal structure at one end of the conductive path. At the other end of the conductive path, the flex circuit may be attached to the ground plane using a bracket, screw, and screw boss.
Abstract:
An electronic device may be provided with a display and wireless circuits. The wireless circuits may include antenna structures and radio-frequency transceiver circuitry that transmits and receives radio-frequency signals using the antenna structures. A ground plane for the antenna structures may be located in the center of the electronic device under the display. A resonating element may be used to reduce signal interference that otherwise arises when simultaneously operating the display and the antenna structures. The resonating element may be implemented using an L-shaped structure have an arm that extends parallel to one of the edges of the display.
Abstract:
Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. A display may be mounted on a front face of an electronic device. A conductive member such as a bezel may surround the display. Internal housing support structures such as a metal midplate member may be used to support the display. The midplate member may be connected between opposing edges of the bezel. The antenna structures may include an antenna formed from part of the midplate member and part of the bezel. Antenna image currents in the midplate member may be blocked by slots in the midplate member. The slots may be located adjacent to the antenna and may ensure that the antenna emits radio-frequency signals in a desired pattern. The slots may be angled and segmented.
Abstract:
An electronic device may include a display. The display may be an organic light-emitting diode display. The organic light-emitting diode display may have a substrate layer, a layer of organic light-emitting diode structures, and a layer of sealant. Vias may be formed in the substrate layer by laser drilling. The vias may be filled with metal using electroplating or other metal deposition techniques. The vias may be connected to contacts on the rear surface of the display. Components such as flexible printed circuits, integrated circuits, connectors, and other circuitry may be mounted to the contacts on the rear surface of the display.
Abstract:
Flexible electronic devices may be provided. A flexible electronic device may include a flexible display, a flexible housing and one or more flexible internal components configured to allow the flexible electronic device to be deformed. Flexible displays may include flexible display layers, flexible touch-sensitive layers, and flexible display cover layers. The flexible housing may be a multi-stable flexible housing having one or more stable positions. The flexible housing may include a configurable support structure that, when engaged, provides a rigid support structure for the flexible housing. The flexible internal components may include flexible batteries, flexible printed circuits or other flexible components. A flexible battery may include flexible and rigid portions or may include a lubricious separator layer that provides flexibility for the flexible battery. A flexible printed circuit may include flexible and rigid portions or openings that allow some rigid portions to flex with respect to other rigid portions.
Abstract:
Electronic devices may be provided that contain flexible displays that are bent to form displays on multiple surfaces of the devices. Bent flexible displays may be bent to form front side displays and edge displays. Edge displays may be separated from front side displays or from other edge displays using patterned housing members, printed or painted masks, or by selectively activating and inactivating display pixels associated with the flexible display. Edge displays may alternately function as virtual buttons, virtual switches, or informational displays that are supplemental to front side displays. Virtual buttons may include transparent button members, lenses, haptic feedback components, audio feedback components, or other components for providing feedback to a user when virtual buttons are activated.
Abstract:
A portable electronic device is provided that has a hybrid antenna. The hybrid antenna may include a slot antenna structure and an inverted-F antenna structure. The slot antenna portion of the hybrid antenna may be used to provide antenna coverage in a first communications band and the inverted-F antenna portion of the hybrid antenna may be used to provide antenna coverage in a second communications band. The second communications band need not be harmonically related to the first communications band. The electronic device may be formed from two portions. One portion may contain conductive structures that define the shape of the antenna slot. One or more dielectric-filled gaps in the slot may be bridged using conductive structures on another portion of the electronic device. A conductive trim member may be inserted into an antenna slot to trim the resonant frequency of the slot antenna portion of the hybrid antenna.